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Abstract

In this paper a new criterion is proposed for optical two-point resolution, applicable to
coherent, incoherent, and partially coherent imaging. Unlike classical resolution criteria,
such as Rayleigh’s, the new criterion takes account of the presence of errors in the observed
intensity distributions. Based on a parameter estimation approach, it shows how the
resolvability of the imaged point sources depends on these errors. Additionally, a test
for the resolvability of the point sources from a given set of observations is presented.
Moreover, a procedure is proposed for the computation of the errors having minimum
energy among all errors undermining the resolution. The results presented include, as a
special case, earlier results on two-point resolution of strictly incoherent imaging systems.
Keywords: two-point resolution, imaging system, resolution limit, parameter estimation,
partially coherent imaging.

1. Introduction

The two-point resolution of_ an imaging system, that is, its ability to re-
solve two point sources of equal intensity, is widely in use as a measure for
the system’s resolving capabilities. In the past, many resolution criteria
have been proposed based on the assumption that the resolving power of
an imaging system is limited by the diffraction at the aperture of the imag-
ing lens of the system. Due to this diffraction, a point source is not imaged
as a point image, but as the Fraunhofer diffraction pattern of the aperture.
Hence, this diffraction pattern can be regarded as the point spread func-
tion of the imaging system. Of all the proposed criteria referred to above,
the classical Rayleigh resolution criterion [1] is surely the most famous. Ac-
cording to the Rayleigh criterion, originally derived for incoherent imag-
ing, two point sources are to be considered as just resolved if the central
maximum of the intensity diffraction pattern produced by one point source
coincides with the first zero of the intensity diffraction pattern produced
by the other point source. This means that Rayleigh’s resolution limit is
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given by the distance between the central maximum and the first zero of
the intensity point spread function of the imaging system concerned. In
Rayleigh’s considerations the human visual system has been employed in
the role of a sensor used to detect differences in intensity at various points
of the composite intensity distribution produced by the two point sources
together. So, obviously, Rayleigh based his criterion not only on the prop-
erties of the diffraction-limited imaging system, but also on presumed re-
solving capabilities of the human visual system. Consequently, Rayleigh’s
resolution limit cannot be regarded as a law of physics, but rather as a rule
of thumb. Other notable examples of resolution criteria, involving both the
properties of the imaging system and the human visual system, are those
of BuXTON, HOUSTON, SCHUSTER and SPARROW [2-3]. All these so called
classical criteria have in common that they provide resolution limits that
are completely set by the functional form of the point spread function of
the diffraction-limited imaging system. No mention is made of the pres-
ence of errors in the observed intensity distributions.

Nowadays, it has been recognized for some time that diffraction does
not impose an absolute limit to the resolving power of an imaging system.
When visual inspection is replaced by intensity measurement, knowledge
of the point spread function of the imaging system makes it possible to
attain unlimited resolution, provided that the intensity measurements are
noise free. For, on this condition, numerically fitting a mathematical model
of point spread functions to the observed composite intensity distribution
would make it possible to resolve the two point sources exactly.

When we turn to spatial frequency domain, viewing the imaging sys-
tem as a linear spatial filter transforming the light field at the object plane
into the light field at the image plane, the work on superresolution [4-6] has
shown that in spite of the bandlimiting filter characteristics of the aperture
of the diffraction-limited imaging system, knowledge of the point spread
function, together with some reasonable a priori information about the ob-
ject (e.g., knowledge that the object is of finite size which implies that its
spatial Fourier transform is analytical) makes it possible to reconstruct the
object exactly by applying mathematical operations on these spatial fre-
quencies that do pass the aperture.

To sum up, it may be stated that, in the absence of measurement er-
rors, an imaging system with a known point spread function can theoreti-
cally attain as high a resolving power as desired. In practice, however, the
intensity measurements are always disturbed by noise (non-systematic er-
rors). Furthermore, the point spread function will rarely be known exactly,
which means the introduction of systematic errors. It may be obvious that
it will be these errors, both systematic and non-systematic, that prevent
an infinite degree of resolution. This insight necessitates a reevaluation of
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two-point resolution in order to establish a resolution criterion that, unlike
classical resolution criteria, takes into account the presence of errors in the
observed intensity distribution. Such a resolution criterion is proposed in
this paper.

The theory developed in this paper is related to earlier work by VAN
DEN BOS on resolution in model-fitting [8-10]. In references [8] and [9] the
two-point resolution of fitting a nonlinearly parametric sum model of in-
tensity point spread functions to intensity observations was considered for
one-dimensional and two-dimensional imaging systems respectively. These
results are only applicable to incoherent imaging. The present study gener-
alizes the results and extends them to include models used to describe one-
dimensional partially and fully coherent imaging, which are no sum models.

The main results may be summarized as follows. A mathematical
model of amplitude point spread functions, which 1s assumed to underlie
the intensity observations, is fitted in least-squares sense to these error cor-
rupted observations with respect to the intensities and the locations of the
two point sources. The locations are non-linearly present in the model to
be fitted. Now, the two point sources have been defined as being resolved
if and only if the model-fitting solutions for their locations are distinct. It
has been shown that the Euclidean space of the errors, or equivalently that
of the observations, can be divided into two regions, separated from each
other by a hypersurface called the bifurcation set. In the one region two
distinct solutions for the locations are found, while in the other region the
solutions exactly coincide. Thus defined, the bifurcation set represents the
error limit to resolution achievable by model-fitting. Furthermore, it has
been found to be relatively easy to decide on which side of the bifurcation
set a given set of observations is located. This offers the experimenter the
possibility to determine beforehand whether or not the two point sources
can be resolved from the available observations. Additionally, an opera-
tional procedure has been developed to compute the errors that have min-
imum energy (in the sense of their Euclidean norm) among all errors caus-
ing coincidence of the solutions. This minimum energy offers the experi-
menter a scalar criterion to determine to what extent coincidence of the so-
lutions is to be expected for assumed error energy. Besides, it can be used
to compare the resolving capabilities of different imaging systems.

This paper is organized as follows. In section 2 the model to be
fitted to the intensity observations is described. As a model-fitting criterion
the least-squares criterion is chosen, since it is most frequently used in
practice. In section 3 the possible structures of the model-fitting criterion
under influence of the errors are discussed. The structure of the criterion
is decisive for the kind of solution. In section 4 the resolution discriminant
and the bifurcation set are derived. Section 5 introduces the concept of
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critical errors. In section 6 an illustrative numerical example is presented.
In section 7 conclusions are drawn.

2. Fitting a Model to the Observed Intensity Distribution

Consider an object consisting of two point sources of light. Let this two-
point object be imaged by a one-dimensional diffraction-limited imaging
system. Assume that the two point sources A and B have equal intensity
and that they are located at the positions z = 8; and ¢ = (, with respect
to the optical axis, where z is the coordinate in the object plane. Due
to the diffraction at the aperture of the imaging lens, each point source
is not imaged as an image point, as predicted by geometrical optics, but
as the Fraunhofer diffraction pattern of the aperture. Let A(z') be the
Fraunhofer amplitude diffraction pattern, i.e., the amplitude point spread
function (apsf) of the imaging system concerned, where z' is the coordinate
in the image plane. Then, the composite intensity distribution in the image
plane produced by the two point sources together is given by:

9(a'; o, B1,83) = of|h(z' — B + |h(z’ — B5) |+

(1)
+2R{y12 - h(z' - B1) - B (2’ — B)}],

where 8] and 5 are the locations of the geometrical image points of A and
B respectively. R is the real operator, * denotes the complex conjugate,
Y12 is the complex degree of coherence [11] and « is the amplitude, which
is proportional to the intensity of the point sources. It may be shown [11]
that |y12| < 1. From now on it will be assumed that the apsfis real. Let v =
R{712}. The value v = 0 corresponds to mutually fully incoherent point
sources, v = +1, —1 imply completely cophasal and antiphasal coherent
point sources respectively, whereas |y| < 1 implies partially coherent point
sources.

Suppose that N observations wi,...,wy have been made on
9(z; @, B1, B3), defined by:

wn:gn(a,ﬂi,ﬂé)+vn; nzla"'aN (2)

with gn = g(zy; o, B, #3), where the z/, are exactly known values of ' (the
measurement points). The v, are the errors in the observations. System-
atic errors are defined as the expectation Elvy] of the v,, whereas non-
systematic errors are defined as v, — E[v,]. The errors are assumed to be
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small in comparison with the errorless observations. Now, in this paper,
two-point resolution will be defined as the ability of the imaging system,
including detection and digital computing facilities, to obtain two distinct
solutions for the location parameters b; and by of the model g(zy,; a, b1, b2)
when the latter is fitted to the observations, with respect to t = (a, b1, bQ)T.
If a least-squares procedure is used to estimate the parameters, the model-
fitting solutions for the amplitude and the locations are equal to the solu-
tion of the following minimization problem:

minimize J2(a, by, b2) = Zd a, by, b2) , (3)

a,01,02

where Jo(a,b1,b2) is the least-squares criterion and the deviations
dn(a,b1,by) are defined by:

dn((l, b1>b2) = Wn — gn(a> bla 62) . (4)

The least-squares solution is the absolute minimum of J2(a, b1, b2). A nec-
essary condition for a minimum is that it must be a stationary point of the
criterion. Stationary points are defined as points where the gradient of the
criterion is equal to zero. So, from Egs. (1-4) it follows that the stationary
points (a, by, 32) of Ja(a, b1, by) satisfy the so-called normal equations given
by:

> dn(a, by, bo)[he (1) + i (b2) + 2vhn(b1)Ra(b2)] = 0, (5)
" dn(@, b1, ba) [ (81)RS (B) + ¥R (B1)Rn(B2)] = 0, (6)
S dn(@, b, b2)[hn (b)) (B2) + vha(b1)RS (B2)] = 0, (7)

where hn(b) = h(zl, — b;) and (9 (by) is the £-th order derivative of hn(b)
with respect to b; evaluated at Z)k.

Next, suppose that a model describing the intensity distribution as if
it was produced by one point source is fitted to the same observations. The
least-squares criterion for this so-called first order model a h2( ) is given by:

(a*,b) = Zdnla b) , (8)

with
dn1(a*,b) = wn — a*h5(B) . (9)
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The stationary points (a*,5) of Ji(a*,b) with respect to a* and b satisfy

S dna(a”, byha(b) =0, (10)
3 dn1(@", ) ha(B)R (6) =0 . (11)

From the Egs. (5-7) and (10-11), it can be concluded that all points

~

(&,b1,b2), with ) = by = b and & = 4" /(2 + 27) are stationary points of
J2(a,b1,b2). In this way, a stationary point of J; generates a stationary
point of J2. So, the stationary points of J2 can be divided into a group that
contains the stationary points for which the location parameters b1 and b2
are distinct and a group that contains the stationary points characterized
by exactly coinciding location parameters. Stationary points belonging to
the first group and the last group will be called second order and first order
stationary points respectively.

It may be obvious that the structure of the criterion J is decisive
for the kind of solution and by that, ultimately, for the resolvability of the
model-fitting solutions for the location parameters. In the next section we
will analyze this structure and the influence of the errors upon it.

3. The Structure of the Least-Squares Criterion
3.1. Stationary Points of the Criterion

For the purpose of this paper the location parameters 3] and 35 are consid-
ered to be very close, so that difficulties with resolution may be expected.
For the moment, let’s consider errorless observations. Then, for reasons of
symmetry, it will be clear that the least-squares criterion J2 has two closely
spaced absolute minima (o, 8, 83) and (e, B3, B1), at which the criterion
is equal to zero. Since the location parameters are close to each other, a
first order model will also fit quite well to the observations in the sense of
least-squares. So, intuitively, least-squares fitting of the first order model
will result in a so-called first order solution (&*,b), , where @* and b will
approximately be equal to (2 4+ 2v)a and the average of B} and B4 respec-
tively. Now, as we saw in the preceding section, this first order solution
(a*,b) generates a stationary point (4,b,b), with @ = a*/(2 + 2v), of Ja.
So, in between the two (second order) minima, the criterion J; will have
an extra (first order) stationary point. This first order stationary point is a
one-saddle point. This can be seen as follows: since the criterion Ji(a”,b)
is the intersection of the plane b = by and the (appropriately scaled) cri-
terion Jo(a,by,by) and (&*,5) is the minimum of Ji(a*,b), the first order
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stationary point must be a minimum in all directions but b; — b2. Travel-
ling on the criterion in parameter space in the latter direction from the ab-
solute minimum (o, 31, 83) through the first order stationary point (&, b, i))
to the absolute minimum (e, B, ﬂi) on the other side of the plane b; = by,
means going uphill from (e, B, 85) to (4, b, l;) and downhill from there. In
conclusion, the first order stationary point is a maximum in the direction
by — b2, but a minimum in all other directions. The minima are close to
the saddle point, since the location parameters were assumed close.

A remarkable phenomenon appearing from simulation experiments is
the fact that errors in the observations may change the structure of the
criterion in such a way that the two minima and the saddle point merge into
one minimum at the first order stationary point (, b, ). Then resolution of
the two point sources is no longer possible, since the least-squares solutions
for the location parameters exactly coincide. In the next subsection this
coincidence phenomenon will be studied by investigating the influence of
the errors on both the nature of the first order stationary point and the
behavior of the criterion around it.

3.2. Taylor Fzpansion of the Criterion

The least-squares criterion Jy is Taylor expanded around the first order
stationary point £ = (4, I;,l;)T. The constant term is equal to Ja(d, b, i)), or
equivalently Ji(a*,5). The linear terms are absent, since the origin of the
Taylor expansion is a stationary point. The quadratic terms are given by:

% tH, ', (12)
where 't = t — . Hj is the 3 x 3 Hessian matrix of Jo with respect to
t = (a, by, bz)T at t = (4, b, b)T. The elements of Hy are defined as:

8% J5(t)
8ti8t]‘ ’

The eigenvalues of the Hessian matrix determine the nature of the station-
ary point. In order to get more insight in the eigenstructure of Hgz, the pa-
rameters are subsequently linearly transformed into

(Hy)ij = ii=1,...,3. (13)

1 g 1
fa="a(24+27), b= 5(1171 +'bo), by = 5(151 —'by) . (14)
It may be shown that in these coordinates the Taylor expansion becomes

A~ 124
J2(*t) = Jo(t) + 3 tTdiag (Hy p2)’t + O(*t%) , (15)
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where Hj is the 2 x 2 Hessian matrix of Ji(a", b) at the first order solution
(a*,b). The symbol O(t") is the order symbol of Landau. It represents all
terms of degree n and higher. The element p2 is given by:

S [8 T @ D)

+3 daa(a", B)hn(é)h@(z})} : (16)

By the assumption that the first order solution (&, 13) always exists, i.e.,
that the first order model fits well to the observations, independent of the
particular realization of the errors, the Hessian matrix H is always positive
definite. Then all eigenvalues of H; are positive. Hence, the nature of
the stationary point t is completely set by the sign of py, since this sign
corresponds to that of the remaining eigenvalue of Hy. The point t is a
one-saddle, a non-degenerate minimum or a degenerate minimum as py is
negative, positive or zero respectively.

The analysis of the higher order terms of the Taylor expansion can be
simplified drastically by using the catastrophe theory. Catastrophe theory
[12] is concerned with the structural change of a parametric function un-
der influence of its parameters. It tells us that a structural change of the
function is always preceded by a degeneracy of one of its stationary points.
The theory also shows that the independent variables of the function can
be split into essential and inessential variables. The essential variables cor-
respond to the directions in which degeneracy occurs. The number of es-
sential variables is equal to the number of possible vanishing eigenvalues
of the Hessian matrix of the function at the stationary point that may be-
come degenerate. In order to analyze structural change, the parametric
function can be replaced by a Taylor expansion in the essential variables,
around the latter stationary point. Terms in the inessential variables do
not play a role at all in the structural change. According to catastrophe
theory the global structure of a parametric function with only one essen-
tial variable is completely set by its Taylor expansion up to the degree of
which coefficient cannot vanish under the influence of its parameters. In
most practical applications, including the one considered in this paper, the
required degree of the Taylor polynomial is very low.

The parametric function studied in this paper is the least-squares cri-
terion as a function of the model parameters. Its parameters are the errors
in the observations. Fgq. (15) shows that only the eigenvalue correspond-
ing to the coordinate 2by may vanish. So, 2by is the only essential vari-
able. Since H; is symmetric, it can be diagonalized by a not specified non-
singular linear transformation of the coordinates 2a and 2b; into %a and
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3by. Although this transformation does not effect the essential coordinate
2b2, the superscript 3 is also used for %by = . Now, the quadratic terms
of the Taylor expansion can be described as:

1 1 1
S e’ 52 b+ 5 B3 (17)

where A} and M) are the eigenvalues of Hy. Next, the cubic and quartic
terms of the Taylor expansion are considered. The coefficient of 3b% happens
to be equal to zero, because of the symmetry of the model. The cubic
cross terms containing the inessential coordinates (3a,3b1) are removed by
applying a procedure described by [12]. First, all cubic terms in which %a
appears are collected. Let the sum of these terms be )} 3001 1 @1 is then
homogeneously quadratic. The sum of %/\'1 3a% and these terms may be
written as:

1 1
(e + Q)" - SXQt, (18)

where the last term is homogeneously quartic. This procedure is next ap-
plied to all remaining cubic terms containing *b;, which can be described as
X, 3b1Q2. Subsequently, the coordinates 3a and ®b; are nonlinearly trans-
formed into the following curvilinear coordinates:

fa=2a+0Q1, 'b1="b0+0Q, (19)

The coordinate 362 is again not affected by this transformation: g = 3b2.
Substituting Fq. (19) in the Taylor expansion removes all cubic terms. No-
tice that the quartic terms resulting from this procedure are described by:

Y NQh, m=12 (20)

Also notice that the quartic terms (20) and those already present in the
original expansion are still in the old coordinates. To change this, Eq. (19)
is used to express the old coordinates as a power series in the new ones and
the result is substituted in the quartic and higher order terms. Now, the
coefficient 7 of ‘b3 described by:

r= v N - SR (21)

where v, 71 and 72 are the coefficients of 3b§, 3a Bb% and °b; 3b% respectively
in the original expansion. Without derivation, the expression for v is given
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by:
e | (=P (1-1)
v=a {mﬂmo + Hapz + 2(1 ) Hin
1. (1-17) }
- = 3D 4 D D , 22
5d [ 00200 + a5 01010 + 10001 (22)
where
Him = 3 RE(RDY ()™ (23)
and ‘ .
Dijaim = 3 dahl (R (B (R (RE™ (24)

with hn = hn(b), p = hg)(l;) and d, = dn1(a",b). Also without deriva-
tion, the expressions for 71 and 72 are given by:

¥ (1- )
m = 2a [H301 + AT ) szo]
(25)
+2 [ . Do2000 — DlOlOO]
(1+7) ’
and
ne =® — (2&*5&) 7 (26)
400
where a )
Ak2 -
® =44 [Hzn + ( +7)H130]
(27)

1 (3-1) ]
—2a* | = Doo200 + D1oo1o + D .
a [2 00200 10010 (1 n 7) 01100

Next, a similar procedure could be used to remove all quartic terms in
which %a and *b; appear and so on. Notice that such a procedure would not
further affect the coefficient 7. So, the resulting Taylor expansion would
be of the form

M (@) + A (B1)% + p(85)* + 7(b5)* + O(t®) (28)

where Ay = %/\'1, Ay = %/\'2 and p = %pQ. The new coordinates a' and
b} have been obtained by applying the procedure described above to the
quartic terms and by = by = by — bo.
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In order to investigate whether or not the Taylor expansion up to
the fourth degree in the essential variable is sufficient, let’s consider the
possible signs of the coefficients p and 7. As we saw before, for errorless
observations the first order stationary point will be a saddle point, so p will
be negative. However, considering Fq. (16), it can easily be understood
that already relatively small errors in the observations may make p positive
and thus the stationary point a minimum. This can be seen as follows. The
apsf h and its first and second order derivatives are relatively independent
of the errors, since the first order solution (a*, Z)) will hardly change under
influence of the errors. The derivations dn, on the other hand, depend
strongly on the particular realization of the errors; relatively small errors
are required to change their sign and by that the sign of p. From Egs. (21-
27), it follows that 7 consists of a sum of terms that do not contain the
deviations d, and a sum of terms that do contain these deviations. The
first sum of terms only depends on the first order solution (&*,b) and is
therefore relatively independent of the particular realization of the errors.
It may be shown that this sum of terms is positive. The second sum consists
of terms of order |d|; and |d|2, where |d|, denotes the £, norm of the vector
d = (di,ds, ... dN)T. These terms will be negligible compared to the first
sum of terms, since, by assumption, the first order model fits well to the
observations. So, T consists of a nearly constant positive term and terms of
order [d|; and |d|; and will therefore always be positive. Consequently, the
expansion (28) is sufficient to describe the possible structures of the least-
squares criterion. This means that the study of the least-squares criterion
under influence of the errors can be replaced by a study of the following
quartic Taylor polynomial in the essential variable bl

p(b2)" +7(82)" (29)

where the constant term has been omitted, since it does not influence the
structure.

4. Resolution Discriminant and Bifurcation Set

The structure of the quartic Taylor polynomial (29) is fully established by
the number and the nature of its stationary points. From Eg. (29) it fol-
lows, that the polynomial is always stationary at the point by = by —by = 0.
This stationary point is a maximum, a non-degenerate minimum or a de-
generate minimum, if p is negative, positive or equal to zero respectively.
These correspond to a one-saddle point, a non-degenerate minimum and a
degenerate minimum of the least-squares criterion Jy at the origin of ex-
pansion (29), i.e., at the first order stationary point (&, b,b). Further anal-
ysis of Eq. (29) shows that the criterion will have two additional stationary
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points if £ is negative. Given the positiveness of 7, it may be shown that
these two additional stationary points are minima. To sum up, it can be
concluded that if p is negative the criterion has locally two (second order)
minima and one (first order) saddle point. This structure corresponds to
the one for errorless observations, found on intuitive grounds in Section 3.
In this case one will find two distinct least-squares solutions for the location
parameters, so that resolution is guaranteed. If, however, under influence
of the errors in the observations, p becomes positive, the first order sta-
tionary point changes from a saddle point into a minimum, while the two
original minima vanish through coincidence with this first order stationary
point. In this case the first order stationary point, at which b; = bs, has
become the absolute minimum of the criterion. Then the least-squares so-
lutions for the location parameters will exactly coincide so that resolution
is no longer possible. Simulation experiments have confirmed the existence
of the two structures described above and up till now no local structures
have been found different from these. Since the sign of p is decisive for the
resolvability of the two point sources, p is called the resolution discrimi-
nant. To test a given set of observations with respect to resolvability, only
p has to be computed. From Fgq. (16) it follows that, for this purpose, fit-
ting of a first order model suffices. Notice, that the resolution test is ap-
plicable to any value of v, except for v = —1.

In the Euclidean N space of the errors the subset of all points for
which p = 0 separates both structures described above. The errors belong-
ing to this subset and the corresponding first order solution (&*,5) must
satisfy the normal equations for Ji(a",b) with respect to (a*,b), and, in
addition, the equation p = 0. This is a set of three equations in N + 2 vari-
ables, or, equivalently one equation in the N errors. This equation con-
stitutes a subspace of the Euclidean N space of errors of codimension 1,
which is called a bifurcation set in catastrophe theory. It divides the error
space into a region, including the origin, where the point sources can be
resolved, and a region where resolution is impossible. Thus defined, the bi-
furcation set represents the error limit to resolution achievable by model-
fitting. Since the first order solution will hardly change under influence of
the errors and the condition p = 0 is linear in the errors, the bifurcation
set is approximately a hyperplane. Simulation experiments have affirmed
the high accuracy of this approximation. Notice that the error space can
easily be transformed into that of the observations by a simple translation.

When the functional form of the apsf is not identical to the one un-
derlying the observations, modelling errors are introduced. These system-
atic errors may, possibly in combination with the additive errors vy, also
cause coincidence of the model-fitting solutions. This means that exact ob-
servations, i.e. all v, = 0, do not guarantee resolution. It may be shown
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that fitting a wrong model causes a shift of the bifurcation set in the er-
ror space. Nevertheless, the resolution test derived in this section applies
to fitting a wrong model, too.

5. Critical Errors

Among all errors belonging to the bifurcation set, those that have minimum
energy, in the sense of their Euclidean norm, are called the critical errors.
Errors having smaller energy than the critical energy cannot cause coinci-
dence of the solutions, errors having higher energy may do so. Knowledge of
the critical energy offers the experimenter the possibility to find out to what
extent resolution is to be expected for assumed error energy. Furthermore,
it can be used to test beforehand whether or not the experimental set-up is
good enough to meet the demands. Additionally, it can be used to compare
the resolving capabilities of different imaging systems used for the same
purpose. By computing the critical energy as a function of the distance be-
tween the two closely located point sources, a relation can be established
between this distance and the maximum allowable energy of the errors.

The critical errors can exactly be found by minimizing the quadratic
sum of all errors with respect to (vi,...,vy,a",b) subject to equality con-
straints (10), (11) and p = 0. This nonlinear minimization problem un-
der nonlinear equality constraints can be solved by nonlinear program-
ming methods and software. Since, however, this is an enormous, time-
consuming task, an alternative procedure will be proposed in this section,
providing an approximate expression for the critical errors that has proved
to be very accurate. Compared to numerically finding a solution, this ap-
proximation means a drastic simplification.

Notice, that the minimization problem in consideration is a Lagrange
problem whose solution must be under the stationary points
(D1 .- 0N,y B2y Ry £,a", f)) of the Lagrange function

L= v2+u Zdnhi + nZdnhnhg)Jr
N

(1—+v 1) 12
¢ (1+7)Zdn (h)? +Zdnhn : (30)

where u, k and £ are the Lagrange multipliers. Here and in what follows
hon, B and d,, are defined as in Egs. (22-24). Differentiating L with respect



180 A. J. DEN DEKKER

to the v, and equating the result to zero yields

o= L2 1o
Up = 2,uhn 2nhnhn
LI =7), 12 )
=z ANV 4 hh@) 31
¢ (B D+ (31

Subsequent differentiation of L with respect to the Lagrange multipliers
and equating the result to zero yields, of course, the Egs. (10), (11) and p =
0. Substituting (31) for the errors in these equations, produces equations
identical to the normal equations for minimizing the deviations

dn = gn(a, B, B2) + on — @ hin(B) (32)

in least-squares sense with respect to the Lagrange multipliers, which are,
by Eq. (31), linearly present in the v,. If {gn(c, 81, 83) —a*R%(b)} is Taylor
expanded about (&*,b) in powers of ((2 + 2v)a — &%), (8; — b) and (B —
5); it can easily be shown that this least-squares minimization makes the
deviations quadratic in the elements of ((2+2y)a—a*), (8 —b) and (8 —5).
So, it can be concluded that for critical errors dn =~ 0. Hence, it follows
from Fq. (32) that the critical errors are approximately equal to the additive
inverse of the deviations of the exact observations and the first order model
best fitting to the observations corrupted by the critical errors. Finally,
differentiating L with respect to (a*,b) and equating the result to zero
shows that (a*, l;) must be approximately, but very accurately, equal to the
solution that would have been obtained in the absence of errors. This means
that the critical errors are approximately equal to the additive inverse of the
deviations of the best fitting first order model to exact observations. The
proof will be left out here, since it requires more or less the same consecutive
steps as described in [10]. In this reference an approximate solution is
derived for the critical errors associated with coincidence of model-fitting
solutions for closely lo¢ated nonlinear parameters of weighted-sum models,
which is a topic closely related to the one described in this section.

Since the bifurcation set is approximately a hyperplane, it can be
shown that an arbitrary error signal v = (v, ... ,vN)T is not on the same
side of the bifurcation set as the origin if [13]

v-e>e-e, (33)

where v - e is the inner product of v and the critical error vector e =
(e1,..., eN)T. The inner product e - e is equal to the critical energy. Rule
(33) can be used to find out whether or not for arbitrary, given errors
coincidence of the solutions for the locations occurs, or for statistical errors,
how probable this coincidence is [13].
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6. Numerical Example

The purpose of this numerical example is to give an impression of the
magnitude of the critical energy as a function of . For this purpose the
critical energy is computed for the model

o Rz - %Aﬂ') + R+ %Aﬂ’)+

2yh(el, — SAB R + A8)] (34

where @ = 1 and h(z') is a gaussian shaped apsf h(z') = exp{—(1/2)z *}.
This is done for —1 < v < 1. The measurement points are described by
z, = —0.01+ (n — 11) x 0.4, n = 1,... ,21. Fig. 1 shows the square root
of the critical energy as a fraction of @* as a function of v, respectively for
AB = 0.02, A" = 0.04 and A’ = 0.08. The results show that coinci-
dence may already occur for relatively low error energy. They also show
that resolution decreases with decreasing A3, as might be expected. More-
over, Fig. 1 demonstrates that resolution decreases with increasing ~; un-
dermining the resolution requires for fully cophasal coherent point sources
errors that are, roughly, three times smaller than for fully incoherent point

sources.

7. Discussion and Conclusions

An earlier presented theory with respect to the concept of optical two-point
resolution, which was applicable to strictly incoherent imaging, has been
extended to include coherent and partially coherent imaging as well. A
new resolution criterion has been proposed that, unlike classical resolution
criteria, takes account of the errors in the observed intensity distributions
and what’s more, it’s even based on these errors. The criterion states
that which errors make resolution impossible and which errors do not,
depends on the distance between the two point sources, the intensity of the
point sources, the choice of measurement points, the degree of coherence
and the point spread function of the imaging system. A resolution test
has been derived that offers the experimenter the possibility to determine
beforehand whether or not the two point sources can be resolved from error-
corrupted observations. Also a procedure has been presented to compute
the errors having minimum energy among all errors undermining resolution.
This minimum energy provides the experimenter with a scalar criterion to
determine to what extent resolution is to be expected for the point spread
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Fig. 1. Critical Error-to-Signal Amplitude Ratio (ESAR) for model (34) as a function
of v, for AB' = 0.02 (solid), AG' = 0.04 (dotted) and AB' = 0.08 (dashed)

function assumed to underlie the observations and, perhaps a guess of,
the error energy. Additionally, it can be used to compare the resolving
capabilities of different instrumental set-ups used for the same purpose.

Finally, the author has found that the theory presented here is not
confined to strictly one-dimensional imaging systems. For two-dimensional
imaging systems a so called resolution matriz can be derived of which the
smallest eigenvalue plays the role of resolution discriminant. These results
will be reported later.
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Abstract

Localisation of vehicles plays an important role in future traffic control concepts. To solve
this task several sensors may be used. Each of these different sensors has its own, specific
disturbances. Incremental measurement of wheel rotation to get information about the
covered distance is distorted by slip and rugged roads, measuring the orientation of the
vehicle by means of a magnetometer suffers from internal and external disturbing magnetic
fields, and vehicle vibrations disturb yaw rate measurement.

A method to improve autonomous localisation based on Kalman filtering is pre-
sented. By estimating the variance of the different sensor data the Kalman Filter param-
eters can be varied to achieve improved system behaviour. Results are presented for an
in-town drive. The system is just about to be implemented in real-time in a test vehicle
at the University of Karlsruhe.

Keywords: data-fusion, Kalman filter, autonomous localisation.

1. Introduction

Rising traffic creates the need for intelligent methods of traffic control. A
basic requirement for intelligent control of traffic flow is the ability of a
vehicle to navigate for a limited period of time without external aid. Thus
the need for a method to estimate its position in respect to a known origin
is obvious.

If possible, a localisation system should make use of sensors that can
already be found in a modern vehicle to keep the costs and the complex-
ity of the overall system low. In the system which is to be presented, the
incremental sensors at the wheels which are used by the anti-lock braking
system are chosen as basic sensors. To improve the quality of the localisa-
tion system, a magnetic field probe is applied as sensor for the terrestrial
magnetic field. Additionally, data from a yaw rate sensor are available.
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Yaw rate sensors will be used not only by the navigation system, but also
by future improved driving stability control systems.

Each of the sensors has its own specific disturbances. v.d. HARDT,
(1992) showed that Kalman filtering is a suitable method for fusing data
provided by the different sensors. Modelling the sensor errors in combina-
tion with a Kalman filter approach improves the system performance sig-
nificantly compared to the simple use of each sensor information alone.

2. Position Determination

The position of a vehicle in respect to a known origin O is definitely deter-
mined by the vehicle’s z- and y-co-ordinates and its orientation © (Fig. 1.)

\\M

Yort1);

()

Fuig. 1. Position of a vehicle

If the position of a vehicle is to be determined at time ¢, = ty + nT,
it is the task of a localisation system to determine the position at time
tnt1(z(n + 1),y(n + 1),0(n + 1)] based on the (known) position at time
tn[z(n), y(n), ©(n)] using the sensor data and applicable data-fusion meth-
ods.

2.1 Assumptions and Approzimations

To calculate the position z(n) = [z(n),y(n), ©(n)] of the vehicle it is as-
sumed, that during each localisation cycle T the vehicle moves with a con-
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stant speed on a circle with a constant diameter. Centre of this circle is
the instantaneous pole M (Fig. 1). If the localisation cycle T is sufficiently
short, this assumption can be considered fulfilled.

To determine the new position from the covered distance As(n) and
the angular orientation increment A®(n) during one localisation cycle,
the arc As(n) is approximated by the straight line Ah(n) (Fig. 2). This
approximation is based on the assumption that the angular increment AQ
is not too big. The approximation error is 1.1% for an angular increment
of 30° . Under normal conditions the angular increment is much smaller,
so the approximation error is acceptably small.

o x(.n) x(n‘+ D x

Fig. 2. Approximation of As(n)

2.2 Determination of the Vehicle’s Position

Under the assumption and approximations made above, the following three
recursive equations for determination of the position can be found:

z(n+1) = z(n) + As(n) - cos (@(n) + A@(n)) , (1a)

2
y(n+1) =y(n) + As(n) - sin (@(n) + A%(”)) , (16)

O(n+1) = 0(n) + AO(n). (1c)

The angular increment A®(n) as well as the orientation @(n) appear in
every equation, in Eq. (1a) and (1b), which determine the new z- and y-co-
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ordinates, non linearly connected with the covered distance As(n). Thus
it is especially important to determine the orientation of the vehicle and
the angular increment as exactly as possible.

Under the condition of exactly known geometric properties of the
wheels and the axle, it is possible to determine the covered distance of
the vehicle As(n) as well as the angular increment A©(n) solely from the
distances covered by two wheels of a single axle: '

As(n) = Qs tAs ;— ASI, (2a)
ASr - AS]

AO(n) = i3

(20)

Asy and As; are the distances covered by the right respectively left wheel
during the localisation period, L is the effective tread.

The covered distance is readily determined by this method, while the
détermination of the orientation, i.e. the angular increment, is not suffi-
ciently possible. Especially the integration process in Fg. (1c) augments
errors due to the use of incremental information only. The reasons for this
are explained in chapter 3.2.1.

The final localisation system uses the average of the covered wheel
distances to determine the covered distance of the vehicle, while the orien-
tation of the vehicle is determined using data fusion methods explained in
chapter 4 for the data of all sensors that provide information on the angu-
lar increment and/or the orientation.

3. Used Sensing Devices

Sensors used for localisation tasks can be divided in two classes. Proprio-
ceptive sensors provide differential information on physical quantities, i.e.
a value is measured in relation to the vehicle’s position after the last lo-
calisation cycle. Proprioceptive sensors are incremental shaft encoders, ac-
celerometers or yaw rate sensors. Exteroceptive sensors measure a physical
quantity, e.g. the orientation of a vehicle, absolutely in relation to an ex-
ternal reference. Examples are a compass, triangulation methods or cam-
eras mounted on the vehicle.

In the system which is dealt with here, two different kinds of proprio-
ceptive sensors are used. Besides the incremental encoders of the anti-lock
braking system a yaw rate sensor is mounted between the front seats. A
compass of Forster type is used to measure the terrestrial magnetic field
and is the only exteroceptive sensor for the vehicle’s orientation.
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3.1 Description of the Sensors

Measurement of the wheel speed is performed by inductive sensors which
scan the teeth of a toothed wheel mounted on the axle of every wheel. The
signals are conditioned using differential amplifiers and Schmitt triggers
and then connected to counter ports of a microcontroller. The microcon-
troller latches the actual counter value for the first and last slope of the
signal for each wheel during a localisation cycle as well as the number of
slopes actually encountered for each wheel. The covered distance may be

determined as:
T fC (NSI - 1) (3)

As=2.m-R-~— . .
Z  (N;— Ny)

Here, R is the radius of each wheel, Ng; the number of slopes, Z the number
of teeth on the toothed wheel, T the localisation cycle, fo the frequency of
the counter and Ny and N, the counter values for the first and last slope.
As the amplitude of the sensor signals decreases with decreasing speed, the
suitability of the wheel sensors is limited to speeds above 5 km /h.

To measure the yaw rate, which is the rotational speed of the vehicle
chassis in regard to the vertical axis, a vibratory gyroscope (MURATA, 1990)
is applied. The measurement effect is based on the measurement of Coriolis
force that detunes a vibrating, triangular bar.

The magnetic field probe is a Forster sensor that consists of two coils
which are arranged with an angle of 90° to each other. They are coiled
around a cross-shaped ferro-magnetic former. So it is possible to measure
the projection of the terrestrial magnetic field into the horizontal plane. A
ramp-shaped current drives the coils from negative saturation to positive
saturation, the saturation region is measured by a superimposed, high-
frequency AC-current. Superimposed magnetic fields yield in a shifting of
the saturation region, which serves to measure the superimposed magnetic

field.

3.2 Errors of the Proprioceptive Sensors

8.2.1 Incremental Wheel Sensors

The use of wheel sensors to measure the covered distance and the angu-
lar increment of the orientation is corrupted by systematic and stochastic
errors. Systematic errors arise mainly from geometric inaccuracies. The
wheel diameters vary with the vehicle speed, the tire pressure, temperature
and the vehicle load. The effective tread L (Egq. (2b)) varies mainly with
the speed and the curve radius. This effect is especially big for the front
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wheels, because here the effective tread depends, caused by the mechani-
cal construction, strongly from the angle of turn and the wheel suspension.
Stochastic errors are caused by variable slip, road inclination, rough road
etc. Partly, the systematic errors can be minimized by calibration runs, but
the stochastic errors can hardly be detected. Because of this, the measure-
ment errors of the angular increment A® using wheel sensors are modelled
as being a constant which is used for the Kalman calculations. Addition-
ally, plausibility checks help to avoid mistakes during anti-lock braking or
during situations with extremely big slip. At speeds below about 10 kilo-
metres per hour, the angular information from the wheel sensors is ignored
due to the sensor problems at low speed (cf. section 3.1).

3.2.2 Vibratory Gyroscope

The gyroscope suffers from two different errors. First, there has to be
considered an offset drift, which is varying slowly with the temperature.
This drift is compensated using a long-term highpass filter. The second
error source are higher frequency disturbances which are mainly caused by
vibrations of the vehicle chassis. To get a measure for these errors, the
signal from the gyroscope is oversampled and a second-order polynomial is
interpolated using the standard least-squares algorithm. The interpolation
error is used to determine the variance O'ZA@)GS of the yaw rate error. As
the variance is non-zero even when the interpolation error disappears, the
variance is determined as shown in Fig. 3. A minimum variance is chosen
for a disappearing interpolation error, and for the highest observed error a
maximum variance is chosen.

T aecis | .

max,______.______,r’ —_— -

min

Fig. 3. Determination of yaw-rate error variance
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3.8 Magnetic Field Probe

Error detection and error compensation for the magnetic field probe as
the only exteroceptive sensor in the system requires special attention. The
errors can be separated into static and dynamic errors as well as into
orientation-dependent and orientation-independent errors.

3.3.1 Sources of Error

The main sources of error for the compass can be found in magnetic fields
that are superposed to the terrestrian field. Internal interference fields are
those fields that have their origin from within the vehicle. They can be sub-
divided into orientation-dependent and -independent fields. Orientation-
independent fields arise from permanent magnetic parts of the vehicle chas-
sis or from on-board DC loops caused by consumers like a rear window de-
froster. They yield a shifting of the origin for the compass. Orientation-
dependent interference fields are caused by poles induced in magnetically
soft parts of the chassis and effect a distortion of the circle expected for
the compass when turning the vehicle to an elliptical curve. Together the
static fields result in a situation as shown in Fig. 4. As long as there are
no changes made in the chassis (turning consumers on and off are such
changes!) the above described static fields interfere with the terrestrial
magnetic field and can be measured and compensated by calibration runs.

H,

-
N

Fig. 4. Shifting and distortion of the magnetic field probe signal

Additionally, dynamic fields are interfered, caused either by the vehicle it-
self (consumers, sliding sun roofs) or interfered from the outside (tramway
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overhead contact lines, trucks that are overtaken). To detect and compen-
sate errors caused by these fields it is assumed that the dynamic errors do
not cause distortion but only shifting of the magnetic curve in Fig. 4. The
errors caused by the vehicle itself can be minimised by a suited mounting
position for the compass and by detection of on-board reasons like the rear
win- dow defroster or the sliding roof and compensation by additive cali-
bration drives. Besides of the errors caused by interfering fields errors arise
from the sensor construc- tion itself. The magnetic field is measured in
two horizontal directions only. Measuring the horizontal projection of the
terrestrial magnetic field causes errors when the vehicle moves upward or
downward, if the road is inclined or if the vehicle is asymmetrically loaded.
These errors can not be detected with the used sensors.

3.3.2. Error Detection and Compensation

The compass generates 24 measurement values during every localisation
cycle. During a calibration drive the parameters of the shifted ellipse are
determined, so that the measured values can be re-transformed to the unit
circle. Considering the mounting angle to the chassis length-axis and the
magnetic declination, it is possible to determine the orientation of the ve-
hicle straightforward.

For validation of the measured values a ring-shaped and a sector-
shaped filter are used. After transformation to the unit circle the distance
of the values to the origin is calculated. If the distance is significantly
different from the expected, the values are considered invalid (ring-shaped
filter). Equally, the deviation of the orientation values ©; is judged, and
values with a deviation from the mean © higher more than a predetermined
angle a i, are considered invalid. The valid measurement values (Fig. 5)
are then used to determine the orientation ©/pp as mean of the valid
values ©;.

The hardest problem to be dealt with when using the compass is the
compensation of the ellipse shifting caused by dynamic disturbances. Here,
all available values from the field probe are used. The shifting of the origin
is performed, when the measured values cover a angular region sufficiently
large, the number of measured values is high enough and if the calculated
value for the shifting is constant for several localisation cycles. If these
assumptions are true, then the shifting is performed by interpolating a unit
circle using the sensor data and the shifting parameters are updated.

To determine the variance of the measurements of the magnetic field
probe, the mean distance of the measured and re-transformed values to the
unit circle is taken into account. The principle is the same as described
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Fig. 5. Ring- and Sector-Shaped Filter for Validation of the Compass Values

for the yaw rate sensor (section 3.2.2). Test drives showed, that instead
of a linear function between the two fixed points of Fig. 3, a square root
function yields better results.

4. Determination of the Orientation using Kalman Filters

4.1. Signal Model to Determine the Orientation

To determine an optimal estimation for the orientation of the vehicle using
the redun- dant information provided by the different sensors, the following
signal model is used as a base for the filtering process:

- e o

O, the signal vector, is composed of the two variables A® and © - u(n)
is the (unknown) value of the angular acceleration at instant n. u(n) is
modelled as white noise with mean zero and variance 2. A©(n) and ©(n)
the output variables of the system that are corrupted by noise depending
on the used sensors:

o] =1 e |+

EAP (n)
eo(n)

(5)




194 M. OSTERTAG

Signal Model Kalman Filter
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Fig. 6. Signal Model and Kalman Filter Structure

The output noise eapo(n) and eg(n) is modelled as gaussian noise with
mean zero that is statistically independent. The variance matrix V. of the
noise for the different sensor types is determined as described in chapter 3.

Fig. 6 shows the signal model and the Kalman filter structure. A
prediction for one step is performed, which is then used to estimate the
optimal values of A®(n) and ©(n) (KRONMULLER 1992, and KROSCHEL
1988).

4.2. Recursive Fvaluation of the System

Using the matrices

10 1 [t o0 _[Ku K
A“[l 1] ’ b_[o}’ C—{O 1} andK-[Km Kzz} (6)

for the evaluation of the system shown in Fig. 6, the estimated value for
the orientation and angular increment at instant n is:

O(n+1) = (A -K(n)-0(n)+K(n) - On(n) (7)
with the recursive equations
K(n) = AV, (n)CT[V.(n) + CV(n)CT]™ (82)

Vi(n+1) = (A -K([®)C)Vg(n)(A - K(n)C) +

+K(n)Ve(n)K (n) + Ba2BT . (8b)
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Here, Vg (n + 1) is the covariance of the prediction and K(n) is the filter
gain. The elements K;; of the filter gain matrix are:

Kii(n) = V11 - Vicas — Vigrs - Vicor + Vien - 0 (n)

Ki13(n) = Vi 19 - 0he(n)

Ko1(n) =Vka1 - Vo — Vi Vo1 + (Ve + Ve o) - a5 (n)
Kaa(n) = Vi1 - Voo — Vo - Veor + (V2 + Vi ae) - Tap(n) (9)

Vk,ij are the elements of the prediction covariance matrix Vg (n), o (n)
the variance of the noise of the orientation measurement and 3o (n) the
variance of the angular increment noise.

4.8. Cascading of the Kalman Filters

Using all three sensors that provide information on the orientation or the
angular increment a Kalman filter structure is shown in Fig. 7. The first
Kalman filter (KF1) fuses the information from the magnetic field probe
and the gyroscope to obtain an improved estimate for the vehicle’s orienta-
tion. The following, second Kalman filter (KF2) uses the information pro-
vided by the wheel sensors. The value for ®, at the input of KF2 is the
output of KF1. The corresponding variance for the orientation measure-
ment is Vi 99, the prediction variance of KF1.

In case of a sensor defect, for a first step the information provided
by that sensor is kept from the prior period and the sensor variance is in-
creased. If the sensor defect lasts for several localisation periods, the struc-
ture of the cascaded Kalman filters is changed. If the missing information
is either the one from the gyroscope or the one from the wheel sensors, the
system keeps operating with a single Kalman filter as described in section
4.2. If the defect sensor is the compass, the Kalman filter structure has to
be changed. The absolute value for the orientation cannot be measured,
so the absolute orientation is estimated by adding one of the incremental
sensor values to the optimal value estimated one step in the past (Fig. 8).

Here, each of the input values for the Kalman filter algorithm is given
a variance as determined for the incremental sensors.

5. Experimental Results

In the following section some of the experimental results are presented.
First, values for the estimated variance limits that led to a satisfactory
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Fig. 8. Reduced Kalman filter structure with compass defect

system behaviour are presented. Thereafter, the new algorithm is compared
to the simple combination of the sensor values for different test drives.

5.1. Choosing the Variance and Algorithm Parameters

The geometrical properties of the test vehicle were determined during sev-
eral calibration drives. These include straight drives to determine the wheel
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diameters under dynamic circumstances as well as several cycling drives to
determine the tread.

During the development and test it showed, that the sensor variance
region is the most important tool to tune the algorithm. For the wheel
sensors, a constant variance UZ\@}ABS of (0.5° per system cycle)? was chosen.
In general, yaw rate measurement results in a better reliability of the data,
so the minimum value UZA@,GS for the gyroscope (cf. Fig. ) was chosen to

be (1° per system cycle)% and the maximum value is (2° per system cycle)?
for the maximum interpolation error observed during test drives.

When choosing the variance estimation for the magnetic field probe,
it showed that a relatively high variance even for undisturbed measure-
ments improves system behaviour. The reason is that the compass as the
only exteroceptive sensor has a high long-term influence on the orientation
estimation. Dynamic disturbances, which last for only a few system cy-
cles, can easily be suppressed by choosing the compass minimum variance
of (10°)?. Here, the maximum variance was chosen as (50°)>.

The variance of the unknown system input noise, the angular accel-
eration, was chosen to be fixed as (10° per (system Cycle)Q)z. For further
investigations, a functional link between the vehicle speed and the system

input variance might provide even better results.

5.2 In-Town Test Drive

The test drive presented here is a track in Karlsruhe. Fig. 9 shows the
results for the Kalman filter algorithm compared to algorithms that use
only the compass data or only the gyroscope data for determination of
the vehicle’s orientation. Starting point is at the coordinate origin in the
lower right corner of Fig. 9. The black asterixes are reference points taken
from a map, after every 100 localisation cycles a cross is printed on the
respective trajectory. The Kalman filter algorithm reaches the target after
a covered distance of 6.5 km with an accuracy of 3.5%, the algorithm
using the compass shows an error of twice the size, and the results of the
algorithm that uses the gyroscope data only are not satisfactory at all.

It can be seen that the algorithms using the compass are better in
keeping the orientation than the algorithm using incremental information
only. Orientation is lost right at the beginning of the drive, afterwards the
vehicle is steadily turning too far to the right.

Reasons for the superior performance of the Kalman algorithm in
comparison to the simple use of the compass data can be explained using
Fig. 10. The orientation information of the compass alone is plotted as a
dashed line, while the orientation for the Kalman algorithm is plotted as
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solid line. The angle information of the compass suffers from short-time
disturbances. At the beginning of the track, the road crossed railway lines
close to the central station of Karlsruhe. This leads to massive disturbances
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in the compass data. The orientation determined by the Kalman algorithm
does not follow the compass data because of the use of additional data from
the incremental sensors.

More test drives show similar results. Still it shows that preprocessing
of the sensor data is most important to achieve satisfactory results. If, for
example, the medium and long-term errors of the magnetic field probe are
not compensated properly, the estimated orientation has a bias of several
degrees. This leads to significant localisation errors.

6. Conclusions

A method for autonomous localisation of vehicles based on wheel rotation
measurement, yaw rate measurement and a compass was presented. The
determination of the covered distance is performed based solely on the
wheel information, while the orientation of the vehicle is determined based
on all available sensors. Combination of the sensor data is performed using
cascaded Kalman filters. Modelling of the sensor errors gives the possibility
for adaptive variation of the noise variances used to calculate the Kalman
filter gain. So, an improved estimation for the vehicles orientation can be
achieved.

A careful pre-processing of the sensor data is very important. Special
care must be taken considering the compensation of the offset drift of the
compass. Badly compensated compass data deteriorates the function of
the localisation system remarkably.

Development of algorithms to improve estimation of the covered dis-
tance are subject of further investigations as well as map-matching meth-
ods. This will not only provide the opportunity for giobal localisation but
also the possibility to adopt parameters which are subject to change dur-
ing operation of the vehicle. Mainly, that are the wheel diameters and the
offset drift of the gyroscope. Methods to improve compass compensation
are also investigated.

The localisation system presented is implemented in real-time in a test
vehicle at the Institute for Industrial Information Systems at the University
of Karlsruhe.
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Abstract

This paper describes a signal-flow graph compiler which produces distributed code for
heterogeneous target systems. The compiler is devoted for mainly Digital Signal Process-
ing problems. The code generator features reprogrammable operation library, the static
scheduler supports fully heterogeneous systems and the input graph may contain run-time
decisions in a limited way. The system has been implemented on IBM PC compatibles
under MS-Windows so it does not require expansive host computer.

Keywords: compile-time scheduling, parallel processing, heterogeneous architectures.

1. Introduction

Writing programs for the modern Digital Signal Processors (DSPs) intro-
duce difficult tasks for the software engineers because a painful trade-off
exists between the computing power and the productivity /task complexity.
Unfortunately the existing and well-known higher level programming envi-
ronments (for example the ‘C’ language) perform very poorly on the DSP
platforms because being general languages they cannot exploit the special
capabilities of the DSPs (circular buffers, parallel instructions and so on) or
avoiding pipeline effects. This can cause extremely high performance loss
(can be as much as 1000% compared to the assembly realization). Several
developments were made to improve C compilers on DSP platforms (LEARY
and WADDINGTON, 1990) but generally they use system or DSP dependent
language extensions and their performance is still not really convincing.
So the developers have to choose — writing the DSP code in assembly for
achieving higher performance thus lower hardware cost or using a high-
level environment which will speed up the development but decrease the
efficiency of the DSP so that more expensive DSPs must be chosen. It can
even happen that the problem cannot be solved on high level.

The other problem is the embarrassing abundance of DSP architec-
tures and languages. One often faces the problem of porting existing results
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onto other DSP platforms. If the code is written in assembly, this will be a
long and tiresome process. Some ‘common languages’ are needed but not
having efficiently realizable high level platform this solution does not seem
to be promising. Nowadays the solution is sought toward optimized soft-
ware libraries (like the SPOX) which try to combine the power of assembly
routines with the efficiency of C. The SPOX does accelerate the developing
process but it is a fixed set of routines and if we extend it (for example we
need an arithmetic routine or new algorithm that the SPOX cannot offer)
we still have to write it in assembly losing the portability.

Nowadays the parallel DSP is in the focus of attention, first of all be-
cause real-world DSP problems often require immense computing power.
A number of existing DSPs can be used for parallel realizations, some of
them has been designed especially for parallel computing for example Texas
Instrument’s TMS320C40, TMS320C80 and Analog Devices ADSP21060.
The task scheduling is an important part of the multiprocessor implementa-
tion of DSP algorithms. This equally means partitioning the tasks among
multiple DSPs and scheduling the tasks on each DSP. Generally paral-
lel programs are scheduled ‘by hand’ in the existing parallel development
systems which is a difficult task and in the case of more complex tasks
it cannot be done effectively. The other approach used frequently in the
existing DSP operating systems uses the well proven real-time operating
systems scheme (sometimes time-sliced scheduling is added). This scheme
is based on separate tasks and a task scheduler program which changes the
tasks when it is necessary. This task scheduler requires processing time.

Speciality of the DSP algorithm is that it does not require much run-
time decisions. Very handy description form of these algorithms is the
signal-flow graph (SFG). Signal-flow graph is a graphical description of
an algorithm in which computations are represented by graph nodes and
dependencies among the computations by graph branches. If we can cluster
enough nodes together that their dependency graph and execution time do
not depend on the input values, we can schedule in compile time thus
eliminating the processor load of the dynamic scheduler.

Thus the DSP code generation problem is the following: we need
a system which is flexible enough to be adapted to several existing DSP
platforms, avoids the power loss of the high-level languages, solves the par-
titioning and scheduling problems and in addition it is easy-to-use for the
DSP algorithm developer who is generally not a programmer. A proposi-
tion for this problem will be presented in this document describing Rafael,
an intelligent code generator based on signal-flow graphs.

Rafael was designed as a small, flexible system which can run even on
very small computers (it is implemented under Microsoft Windows on IBM
PC compatible computers). It is a SFG compiler integrated into a simple
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framework which allows DSP algorithms to be described in SFG form and
the compiler translates this description into program for a heterogeneous
multiprocessor hardware. The compiler distributes the SFG on the multi-
processor system, schedules the operations on each processor, creates the
communication scheme among the processors and generates executable as-
sembly source program for each processor. Rafael features a programmable
DSP database and code generator library so it can be adapted easily to any
processor. Small resources of the host computer do not allow us to com-
pete with the comprehensive features of existing SFG compilers hosted on
workstations but we hope to prove that Rafael can compete successfully on
several domains with those systems.

2. Existing Data-Flow Compilers

A number of block-diagram based design systems have been introduced in
the literature. We mention here the commercially available DSPlay (Burr-
Brown) and SPW (Signal Processing Workstation) (Comdisco) systems.
DSPlay is PC-based, it can simulate the input block-diagram and can gen-
erate code for AT&T DSP32. The Comdisco system started as a simple
simulator but actually it is able to produce highly optimized code for almost
all the DSP types and can even generate circuit description. Since June
1994 the partitioning on multiprocessor DSP system must have been done
by hand. The Cathedral system (DE MAN et al., 1986; LANNEER, 1993)
devoted to circuit synthesis features SFG partitioning-scheduling but it
uses the Silage functional language (GENIN et al., 1990) as its input. The
Ptolemy system (BUCK et al., 1991; BUCK, 1993; BUCK et al., 1994) is the
most comprehensive existing simulation/code generation system. Ptolemy
supports the coexistence of different computation models (called domains
by their terminology) and offers clearly defined object-oriented interface
for defining a new domain. Existing domains include static dataflow (LEE
— MESSERSCHMITT, 1987), dynamic dataflow (BUCK, 1993), discrete event,
message queue and communicating process (BUCK et al, 1994) models.
Ptolemy makes almost no assumption about the internal structure of the
computation models it supports, it is the biggest strongness and weakness
of this system. It is a strongness as it allows modelling the whole system in-
cluding its software, hardware and communication parts in one framework.
It is weakness as Ptolemy allows mixing computation models that do not
coexist well, it does not force a good design style. Nevertheless, Ptolemy
has huge impact on the field and its importance grows continuously as
existing computation models and tools are integrated with 1t.



204 G. PALLER and K. CSEFALVAY

Many ideas of the structure of Rafael were borrowed from the now
historical Gabriel system. Gabriel was phased out in favor of the much
bigger Ptolemy system but we found that some solutions introduced in
Gabriel fit well to our much less powerful target platform. Gabriel (LEE
et al,. 1989) was the first system capable of generating executable code at
Berkeley in which the synchronous dataflow paradigm was implemented.
Its predecessor, BLOSIM (MESSERSCHMITT, 1984) was only a simulator.

The operations (or actors by the terminology of the Berkeley team)
are called stars. A cluster of stars forming an interconnected SFG is called
galazy. The final SFG can be hierarchical composed of a number of galax-
ies, a set of interconnected galaxies is called universe. Gabriel has two
levels of user interface. The graphical dataflow organization is used where
appropriate: when describing the algorithm in dataflow format. The stars
have textual definition. This mixed description form helps to avoid the
common problem of the graphical description systems which use graphical
terms where they are not handy.

One of the most striking features of Gabriel is its programmable star
library which influenced a lot the database of our Rafael system. A Gabriel
star is described by a Lisp structure. The star library entry has a header
and a function body. The header structure stores information about the
inputs and outputs of the operation, a short textual description for hu-
man readers and the parameters and their default values. An entry in
the header points to_the star function which gets executed whenever the
star is invoked. This star function can actually execute the operation as-
signed with the star in simulation mode or can generate a code for the
actual target processor in code generation mode. It is important to note
that the code generator star library is written in Lisp so a code generator
function can be guite intelligent when it decides on the text to be gener-
ated depending on the parameters. size of the inputs, etc. Beside the star
function, a Gabriel star can have initialization/termination functions that
are called once before the first invocation and after the last invocation of
a star. Processors are described in a similar way creating Lisp lists that
contain the target system characteristics: number of processors, processor
memory, special hardware units connected to processors, communication
channel characteristics between the processors and communication code
generator routines. The Gabriel system is strictly homogeneous: there can
be only one star library in the memory.

The Gabriel system has the following interesting features:

— It handles multiple sample rates which result naturally from its input
format, the synchronous dataflow graph.
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— It has a second user level, the star library programming level in Lisp
which allows the user to create new stars easily and to add intelligent
optimization/code generation features to the existing star library.

The main weaknesses:

It does not address the question of data dependent constructs, if-then-
else, case, etc.

It does not support heterogeneous systems.

Its scheduler cannot be considered efficient.

|

i

Another system that influenced greatly our work is SynDEx (SOREL,
1994). SynDEx is a code generator environment designed, to be interfaced
with the synchronous language compilers, SIGNAL (LE GUERNIC et al.,
1991), LUSTRE (HALBWACHS et al., 1991), ESTEREL (BoussINOT — SI-
MONE, 1991). It has a graphical and textual user interface that allows
users to construct the algorithm block diagram entirely in SynDEx. It
is designed, however, rather to receive the algorithm graph from a syn-
chronous language compiler. Actually SynDEx is interfaced in such a way
with SIGNAL (BOURNAI, 1994) and work is under way to create a common
format for the SIGNAL, LUSTRE, ESTEREL languages so that they can
send the result of compilation to SynDEx or other code generators. The
algorithm model of SynDEx is the conditioned signal-flow graph. It means
that each node has a clock it is associated to which results in a condition
input for each node (Fig. 1).

Clock inpl Boolean
Operators
Clock inp2
Condition input
————————— =
Data operation [~ =~~~" >
--------- >
Data inputs Data output

Fig. 1. Conditioned signal-flow graph

A node is fired if all its input variables (including the control variable) have
been produced by predecessor nodes and its control variable is irue. The
scheduler considers the condition input dependency as any other depen-
dency: it is equivalent with supposing that each condition is true and each
node can be executed. This way the original conditioned signal-flow graph
is transformed to a synchronous signal-flow graph and static scheduling can
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be used. The original conditioned signal-flow graph is thus partitioned into
a condition calculating part (which is unconditioned) and a data processing
part (which can be conditioned). Is is the responsibility of the SIGNAL
compiler (or the input graph designer) that a proper condition signal be
assigned to each node.

The biggest problem about the SynDEx system is caused by the way
it handles the conditions. The actual implementation does not use the
condition tree (AMAGBEGNON et al., 1994), constructed laboriously by the
SIGNAL compiler, the hierarchy of clocks disappears, all the clocks become
‘level 1’ clocks (inserted just under the root clock). The code generator
does not group operations scheduled one after the other with the same
conditions into one if ... endif. Other drawbacks are that SynDEx does
not support heterogeneous architectures and it can generate only C code.

3. Major Design Considerations of the Rafael System

The Rafael structure was designed according to the four main goals intro-
duced at the beginning of this chapter. The support of heterogeneous sys-
tems needed a flexible operation library or — even better — programmable
code generator module. Considering the code generator programmer’s con-
venience, compiled languages can be quickly eliminated because it would
need the recompiling and relinking of the code generator modules each time
the database is modified. A system constructed in this way would be much
more prone to system crashes as compiled languages allow great liberty in
manipulating the system resources. We decided that reprogrammable parts
of the code generator be implemented in an interactive, interpreted lan-
guage. As we intended to provide the possibility of important intelligence
in these modules (as they determine the quality of the code generated)
we wanted to choose a more powerful language. Considering the possible
candidates we chose Lisp because of the following advantages:

— It is a very powerful language that allows run-time program creation
and it is equipped with efficient database handling capabilities.

— Lisp interpreters are available in relatively small memory requirement
versions which fit well to the small computer (PC) we planned the
system to run on.

— Excellent quality public domain versions have been written and dis-
tributed for several platforms in source code.

— It is a common language in CAD systems.

We must consider, however, the slow execution speed of Lisp whichis
an even more serious obstacle on a small PC system. Although in the sense
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of ease of programming it would have been more advantageous to realize the

system entirely in Lisp, this solution would have resulted in unacceptable
run time on the target system.

4. The Structure of the Rafael System

For the reasons mentioned in the previous section reason we choose a hybrid
structure depicted in Fig. 2.

Output
code

Fig. 2. Structure of the Rafael software

Each part of the software where user modifications are not supposed was
implemented in CtT. This gives us a relatively powerful language with
acceptable execution speed. Programmability is provided at Lisp level
where an interface has been defined for the database and code generator
programmer. By means of this interface the user can extend the database
and the code generator library. The compiler core calls these routines from
C ™ level and uses their return value appropriately.

This solution needed separate tasks and interprocess communication
between the tasks. The minimal ‘operating system’ that is sufficiently
popular and needs small resources was the Microsoft Windows. At that
time Linux (a small Unix version for PCs) was not in the state that we could
have considered it as an alternative against Windows. By my personal
opinion Windows is a poorly designed, inefficient ‘operating system’, today
we would choose some other platform. .

Thus, Rafael was implemented under MS-Windows, parts of this
software (Fig. 2) run as separate Windows tasks and they are connected
through the interprocess communication channels of Windows. The pop-
ular Xlisp was chosen as Lisp interpreter for Rafael because it is close to
Common Lisp and it is available in C source. Xlisp was ported to Windows
platform and the necessary interprocess routines were inserted that allows
this Lisp interpreter to run as a server task.
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The three Rafael software components have the following tasks.

Graph editor The name is a bit exaggerating as the Rafael frame-
work is far from a comfortable working environment. It features a multi-
screen text editor for creating/modifying graphs in textual format, initial-
izes the Xlisp server and launches the Rafael compiler on the actually edited
graph.

Graph compiler It is the SFG compiler. The program analyses
graph description, makes the scheduling and generates the output text. It
can run standalone as well, not only from the framework.

Lisp interpreter The operation database and its associated code
generator routines are realized in Lisp. The client programs launch the
server and send requests to it through interprocess links. Requests are
actually Lisp commands which are executed by the server and the result
of the Lisp command evaluation is returned to the caller C™* program.

As we can see the Rafael software architecture is very similar to that of
Gabriel hence the similarity of the names. Rafael is different from Gabriel
at the following points:

— Rafael’s whole structure is adapted to the small host systems it runs
on. Not the whole compiler was implemented in Lisp, only a part of
it.

— As we will see, Rafael’s whole design including the database, the
scheduler it uses is adapted to heterogeneous systems. Gabriel was
multi-target as it supported multiple start libraries. Rafael is truly
heterogeneous as multiple target processors can coexist in the same
operation library. .

— Rafael supports a limited form of run-time decisions as its importance
has been underlined many times both in the literature and in the
practical engineering work. It will be detailed in section 6.

— Rafael features more advanced and efficient scheduler algorithms.

5. Rafael Nodes and Connections

The Rafael software model defines nodes that represent certain operations
and connections between them. Nodes can be of the following types.

Operations Operations cover functions attached to a certain node.
An operation is a parametrizable function. The number of inputs, outputs,
the execution time and the operation of the function itself can depend on
constant parameters.

Probes Probes cover functions whose task is to acquire input data
from the environment of the dataflow system and send output data to
the environment of the dataflow system. Probes are treated as simple
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operations (with non-zero execution time, if necessary), the only difference
is that they are explicitly forced to certain processors by the user. It
derives from the fact that in a given hardware system the input and output
hardware are assigned to prescribed processors.

Delays Delays are special operators in the sense that they consist
of two parts: a delay input (where new data is put into the delay) and
delay output (where new data is retrieved from the delay). Rafael always
treats delay parts as two distinct operations. It is guaranteed, however,
that output of a delay be scheduled always before the input of the same
delay.

Each node input/output can have a type. Type is a character string
which is checked for matching when node inputs/outputs are connected.
Rafael allows dynamic type names resolved in compile-time that match to
every static type name and solves the type name ambiguities. In Rafael
dynamic type names start with the ‘TYPE’ string, for example ‘TYPE23’
is a dynamic type string. An adder that can add any type of data can
have ‘TYPE23’ type of each input/output node. When any of the in-
puts/outputs is connected to an output/input with static type, the dy-
namic type is replaced by the static type by the checker. For example if
the output of the hypothetical adder above is connected to an input node
with ‘TIME’ type, ‘TYPE23’ is replaced by ‘TIME’ for all the adder in-
puts/uotputs and type checking continues on the inputs. Fig. I illustrates
the process.

TYPEL TIME

Type error |

Fig. 3. Propagating type names in Rafael

Depending on the operation library, ‘tokens’ can have arbitrary size. The
actual Rafael operation library supports one-dimensional vector tokens.
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6. Rafael Software Model

Rafael accepts a restricted version of synchronous dataflow graphs (LEE
— MESSERSCHMITT, 1987) for scheduling. This restriction means that if a
node output produces or input consumes more than one token, it can be
connected only to an input or output that consumes or produces one token.
See Fig. / for example. This simplified scheme allows Rafael to support
practically relevant upsampling/downsampling operations without getting
to a problematic loop scheduling problem (BHATTACHARYYA — LEE, 1994).

e

Allowed connections in Rafael

Not allowed connections in Rafael

Fig. 4. Rafael’s restricted synchronous dataflow graph

Rafael has two software models. The first one is a classical synchronous
dataflow model which does not allow run-time decisions. This model has
been proved to be too restrictive but this is the most effective one. It allows
all kinds of supported operations in the dataflow graph but no conditional
structures are permitted, we will call it static model in the future. The
static scheduler will be invoked for this graph and a single-block schedule
will be generated. This model is the restricted version of the second one
that allows run-time decisions.

Based on the conditioned dataflow model of synchronous languages a
conditioned block dataflow model was implemented in Rafael, we will call it
dynamic model. Inserting if ... endif constructs around each operation
and considering all conditions ¢rue it is an evident but not too efficient
solution for the run-time decision problem. Instead Rafael forces the SFG
designer to group parts of the graph to a block. A block contains a graph
portion for which the following holds true:

1. Inside a block the graph portion is a synchronous dataflow graph
without run-time decisions.
2. All the operations in this block depend on the same condition.
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Outside the blocks only probes and blocks are allowed. This is called

root level. Operations are embedded into blocks, this is the block level.

This simple scheduling scheme used in Rafael solves the scheduling

problem in two passes.

1.

First it prepares static schedule for each block independently. Vari-
ables are propagated through the root level block connections and
static scheduler is invoked for the block.

Dynamic root-level scheduling. Blocks are considered as operations
which run on all the processors at the same time. A list scheduler
traverses the block connections and builds the order of the block con-
sidering only dependency relations. During the execution a block may
or may not be executed depending on its condition input variable (if

any).
INPI
INP2

INP3

OuT1

INP4

Fig. 5. Example static model graph

Fig. 7 demonstrates this method on the example dynamic model graph in

Fig. 6

Advantages of the conditioned block schedule are the following:

We can provide conditional structures while preserving static schedul-
ing.

The user of the system is forced to group nodes with the same condi-
tion together, the performance loss resulting from the repeated con-
ditional statements is thus avoided.

The static scheduling algorithm estimates the reality much better
than in the SynDEx case. As a block contains only synchromous
dataflow, the static scheduling is always exact, not only in the worst
case as in SynDEx.

SIGNAL compiler makes readily the operation grouping itself.

We have to mention the following disadvantages:
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Fig. 6. Example of dynamic model graph

Pl Cl Pl | Al ] A2 A3 Pl |B2| B4
P2 C2f C3 P2 A4 P2 | Bl B3| BS
Schedule for Block C Schedule for Block A Schedule for Block B
Pl
Block C Block A Block B
P2

Dynamic schedule (block executions are conditioned)

Fig. 7. Example of dynamic model scheduling

— If the blocks contain insufficient operations, static schedules of blocks,

can be too sparse. In this case even true dynamic scheduling could
provide a better solution.

It is very easy to construct an incorrect graph. Consider the graph
in Fig. 8. In this example Block B depends on Block A and in the
root-level dynamic scheduling it is scheduled after Block A. It cannot
be guaranteed, however, that Block A was really executed because it
depends on a run-time decision. If the condition of Block A is not
true, Block B will get its input from obsolete temporary variables
producing a bad result. As Rafael makes no effort to check the cal-



THE RAFAEL MULTI-TARGET 213

culation of condition variables, these situations cannot be signaled by
the compiler.

— Other eflect of the fact that Rafael does not analyse the condition
calculation is that all the condition variables must be recalculated in
each iteration. We can recall that SIGNAL compiler laboriously opti-
mizes the condition tree so that its output program can be the ‘laziest’
which means that if ... endif structures belonging to a clock expres-
sion on the lower level of the clock tree will be appropriately nested
into if ... endifs of upper level clocks. The scheme presented above
will flatten the clock tree putting all clock expressions to level 1.

In spite of the disadvantages we consider that the Rafael conditioned
block model avoids successfully the dynamic scheduling and in the case
of large static blocks and few decisions (which is often true at a DSP
algorithm) it is sufficiently efficient.

Condition of Block B

—> OUT1

Fig. 8. Example of possibly erroneous graph

7. Rafael Hardware Model

Rafael supposes an arbitrary number of interconnected, heterogeneous pro-
cessors as target system. The communication hardware connecting these
processors can be heterogeneous as well. The static scheduling algorithm
prescribes, however, that execution times of operations on all the processors
of the target system and communication times on all the channels in the tar-
get system should be known in advance. These calculation/communication
times can depend on certain parameters, in the case of calculations these
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parameters are defined by the operation type, in the case of communication
it depends on the amount of data units passed between the processors.

Rafael uses a simplified communication model, critiques say it is over-
simplified. Rafael considers the communication structure totally intercon-
nected but allows different communication costs for both directions of each
channel. The actual Rafael implementation does not have router algorithm
so if the target architecture is not totally interconnected, virtual commu-
nication layer must be provided by operation library programmer.

The basic Rafael communication notion is the channel. Channels are
resources that are shared by processor pairs willing to communicate. A
channel is assigned to each processor pair and that channel is occupied for
the length of the communication between that processor pair. Other pro-
cessor pairs having the same channel number have to wait with their request
until the channel is free. Channels represent hardware resources used for
communication (bus, network, communication links, etc.). The processor
pair—channel number assignment is fixed in the hardware database.

Each communication activity can have three properties which are re-
turned by the hardware database functions to the compiler core.

Activity time It is the time during which the communication activity
occupies the processor it is scheduled on. If the communication hardware
needs constant interaction with the processor (buffered serial line hardware,
for example) the activity time is the same as the time required for the
communication activity. In the case of DMA it is the DMA initialization
time.

Survive time This is the time which is needed to finish the commu-
nication after the activity itself finishes. For example a DMA is initialized
during the activity time then it accomplishes the task. During the survive
time the variable which is sent cannot be reused and no new communica-
tion activities can be accomplished on that channel. On the receiving side
all the calculations which need the received variable are delayed until the
end of the survive time.

Synchronous flag This flag controls the scheduling of communica-
tion activities. If this flag is false for a certain communication activity,
the scheduler can put the send activity before the receive activity of the
same communication pair. No ‘crosses’ are allowed, however (see Fig. 9).
If the synchronous flag is true, the send and receive activities are scheduled
strictly at the same time.
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Valid non-synchronous commmnication
activity arrangement

Fig. 9. Allowed and not allowed communication schemes

8. Graph Description Language

Invalid arrangement ("cross”)

215

The actual Rafael implementation does not contain a graph editor, the
user must construct the input algorithm graph himself or herself. A simple
graph description language is used for this purpose which will be described

briefly in this section.

According to the two software models in Rafael. there are two varia-
tions of the graph description language. In the first variation (synchronous
dataflow) only probes, nodes, delays and connections are allowed. Let us

see an example graph:

PROBE I 1 1 ATYPE 1 1
PROBE I 2 1 ATYPE 1 1
PROBE 0 7 1

NODE 4 ADD (4)

NODE 5 ADD (4)

NODE 6 ADD (4)

NODE 8 MUL (4)

NODE 3 CONST ((1 2 3 4))
DELAY 9 4 1

CONNECTION 1.1 4.1
CONNECTION 2.1 4.2
CONNECTION 2.1 5.1
CONNECTION 3.1 5.2
CONNECTION 4.1 6_1
CONNECTION 5.1 6.2
CONNECTION 6.1 8_1
CONNECTION 3.1 9.1
CONNECTION 9.1 8.2
CONNECTION 8.1 7_-1
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PROBE <I/O> <nodenum> <type> <upsample> <downsample>
<I/O> is the input/output probe type, <nodenum?> is the number of
the node, <type> is its type name. For convenience of the compiler,
Rafael stores the relative sample rate of the node in rational form.
<upsample> is the nominator, <downsample> is the denominator of
the relative sample rate (see section 11).

NODE <nodenum> <operation> <parameters>
<nodenum> is the node number, <operation> is the function at-
tached to the node, <parameters> is the parameter list which de-
pends on the function. In the case of the example ADD operator
determines the size of the vectors to be added.

DELAY <nodenum> <delay size> <delay length>
<nodenum> is the number of the node, <delay size> is the size of
one token it stores, <delay legth> is the number of delay stages data
fed into the delay goes through. Delays explicitly have TYPE in-
puts/output types.

CONNECTION <onode>_<onum> <inode>_<inum>
Defines a connection between the output numbered <onum> of the
node having <onode> node number and an input described by similar
parameters.
The conditioned block dataflow model allows block definitions beside
the elements above. In this model only probes, block definitions and con-
nection definitions are permitted at root level.

BLOCK MADD2 I1->6_1:TYPE1 I2->5.2: TYPE1
I3->5_1:TYPE1 01->6_1: TYPE{

NODE 5 MUL (4)

NODE 6 ADD (4)

CONNECTION 5.1 6.2

ENDBLOCK MADD2

BLOCK MUL2 C:BOOL I1->6_1:TYPE1 I2->52: TYPEL
I3->5_1:TYPE1 01->6_1: TYPE1

NODE 5 MUL (4)

NODE 6 MUL (4)

CONNECTION 5.1 6.2

ENDBLOCK MUL2

PROBE I 1 1 ATYPE 1 1
PROBE I 2 1 ATYPE 1 1
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PROBE I 3 1 ATYPE 1 1
PROBE I 10 1 BOOL 1 1

PROBE 0 7 1

NODE 4 MADD2

NODE 5 MUL2

CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION
CONNECTION

101 5.C

1.1
2.1
3.1
1.1
2.1
4.1
5.1

The only
pair. Blocks group their internal nodes into one virtual operator that can
be placed by a NODE definition. A internal node in a block is identified by
its block name and node number, two blocks can have internal nodes with
the same node number as internal nodes are invisible outside of a block.
The block header contains the following elements:

I <inputnum> - ><inp nodenum>_<inp inputnum>:<typename>

4.1
4.2
4.3
5.1
5.2
5.3
71

new element is the BLOCK ... ENDBLOCK definition

Connects <inputnum> input of the virtual operator represented by
the block to <inp inputnum> input of <inp nodenum> internal node.
Type of the block’s input is set to <typename>. Data fed into that
input of the block will be propagated to the internal node’s input.
<onum> — ><onodenum>_<out outputnum>:<typename>
Connects <onum> output of the virtual operator represented by the
block to <out outputnum> output of <onodenum>> internal node.
Type of the block’s output is set to <typename>. Data produced
by that output of the internal node will be propagated through the
output of the virtual node.

:<typename>> Indicates that the block has condition input and the
type of the condition input is <typename>. Condition input can be
referenced as ‘C’ in the CONNECTION definition.

9. The Database

Rafael provides a programmable operation and hardware database stored in
Lisp. The database is accessed by the compiler core through Lisp functions.
The interface of these Lisp functions is documented so that the database
programmer can interface to the compiler core.
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The database consists of two parts: operation database and hardware
database. Operation database stores the actual function set for all the sup-
ported hardware devices while hardware database provides Lisp functions
that can calculate every characteristic of the target hardware system which
is necessary for scheduling and code generation.

The database is handled and maintained through the XLisp inter-
preter and stored in Lisp lists. Because XLisp runs under Windows, all
its memory is virtualized so we can store the whole database in the mem-
ory of XLisp. The simplifies greatly the implementation of the database
management because we simply use the built-in list manipulating functions

of LISP.

The Operation Database

The operation database has two parts: operator headers and compilation
strategy functions. The operator headers are stored in lists which are bound
to the operator name. This list stores the following information:

— The name of the compilation strategy routine.

— The description of the input(s) (type, size).

— The description of the output(s) (type, size, storage class, sample rate
factor).

— The execution time in system clock beats.

— Parameters. The parameters and their meaning are defined by the
creator of the operator library. For example the parameters for the
FIR operator can be the length of the filter and the filter coefficients.
The actual values of the parameters are supplied when the user places
an operator, it is passed in the SFG script.

— Constructor and destructor routines. The compiler creates a construc-
tor function for each operator which requests it. The constructors are
invoked before the operator is executed first time. Similarly, before
the SFG execution terminates, destructor functions are called for the
operators which need it.

The data structure above is described in a list like the following:

strategy list)

inputs )

outputs )

time function )

parameters ) )

constructor strategy list )

NN N N AN NN

destructor strategy list )
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The strategy list contains the names of the compilation strategy func-
tions for each hardware device. It has the following format:

( (devicel functionl) (device2 function2)
(devicelN functionN) )

The compilation strategy function is called each time during the code
generation pass when the schedule contains a reference to that function
and its program text must be generated. This LISP function gets the label
lists of the input and output branch descriptors (effectively labels of data
areas where the compiler allocated space for the temporary variables), the
parameter list (which contains data like coeflicient vector of a filter, etc.)
and returns the program text to the compiler which writes it into the
output file. The strategy function can decide on the subroutine chosen
or the form of the generated program text depending on the input and
output connections and the actual parameters. The subroutine bodies can
be stored in an ordinary object library, in this case Rafael will place only
references into the code which can be resolved by the linker which belongs
to the DSP’s development system. This subroutine library can be created
and maintained by the assembler and library manager tools of the DSP
development software package. Another design style is to inline all the
operation bodies which result in slightly faster code but larger code size.

The excellent symbol handling capability of the LISP which makes
this language so appropriate for the artifical intelligence applications can
be exploited in this system and we can build significant intelligence into
the strategy functions.

The input list stores the description of the operator’s input. Its format
is the following:

( ( typel sizel ) (type2 size2) ...
(typelN sizell) )

where type is the freely chosen signal type (for example time for time
domain signals) and size is the size of the input vector accepted by this
node. This size can also be a symbol from the parameter list (for example
the size of an FFT input can be N where N is a parameter supplied by the
SFG designer) or even a lambda function of the parameters. The type
name can be either static or dynamic. Dynamic type names have the form
of ‘TYPEn’ where n is an integer number. Dynamic type names are resolved
when they are connected to a statical one.
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The output list is similar, but beside type and size it also contains
the storage class specifier. and the upsample and downsample factors. Its
format is the following:

( ( typetl sizel stl usl dsi)
(type2 size2 st2 us2 ds2) ...
(typeN sizelN stN usN dsN) )

The storage class specifier shows whether the compiler has to allocate
space for the output variable or the space is reserved by the operator.
The us and ds values describe the change in sampling-frequency caused by
the operator. The us denotes the multiplication, ds is the division of the
sampling frequency. For example the pair 2 1 means interpolation by 2.

The time function list stores Lisp functions which get the bound pa-
rameter list and return the execution time of the operator on a given hard-
ware. The list has the following format:

( ( devicel lambdal ) ( device2 lambda2 ) ...
( deviceN lambdall ) )

where lambdal ... lambdaN are lambda expressions (no-header Lisp func-
tions) which compute the execution time for the given device.

The parameter list contains operator-dependent data. For example
in the case of an ITR filter it contains the size of the nominator and de-
nominator coefficient vectors and the vectors themselves. In the operator
header the list is stored in unbound form (without parameter values), the
editor evaluates this list when placing an operator. The IIR parameter list
would look like the following in unbound form:

(N COEF1 M CODEF2) )
and in bound form (after the operator has been placed)
(3 (0.34 - 0.2 2.12) 4 (0.23 0.77 0.192 2.94) )

This bound form is stored in the SFG description file and is passed
to the execution time computing and strategy functions when necessary.

The constructor and destructor strategy lists have the same format as
the strategy function. An operator may have constructor and/or destructor
functions — pieces of code which are executed before the operator’s first
run and after the operator’s last run. If the operator does not need such
functions, NIL is stored instead of the name.

The following small code piece shows the implementation of the ADD
database entry for the TMS320C30 and DSP96002.
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(setq add * ((
; c30add is C30 strategy function
(c30 <¢30add)
dsp96kadd is 96K strategy function
(dsp96k dsp96kadd)
)
Has two inputs, each of size n
(n is the operation parameter)
((typel n) (typel n) )
Has one output, size n, automatic storage,
; interpolating factor: 1 .
( (typetnat 1))
; Time functions for C30 ...
( (c30 (+ (* 2 n) 10) )

; and 96K
{dsp96k (+ (* 2 n) 5) )
)

; Has only one parameter (n)
(n)

No constructor for C30 and 96K

( (e30 nil) (dsp96k nil) )
No destructor for C30 and 96K

( (30 nil) (dsp96k nil) )

Target Hardware Database

The target hardware database provides the following information to the
compiler core:

— Processor numbers and processor types in the target system.

— Activity, survive times and synchronization flag for any communica-
tion activity.

— Communication cost estimation for any communication path in the
target system (for the scheduler).

— Channel-processor pair assignment for any processor pair.

A set of Lisp functions must be written for each target system. It is a
relatively inconvenient solution but allows greater flexibility.
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10. Rafael Memory Management

Rafael allocates memory for temporary variables in compile time. When
the generated program runs on the target system, every variable is already
assigned a memory address. Rafael implements a simple ‘first fit’ dynamic
memory allocation scheme when compiling the graph.

When a node is scheduled, Rafael allocates its output variables (the
input variables must have already been allocated). The scheduler keeps
track of the actual state of memory map by the means of chunk lists which
describe, actually what size of blocks are occupied at what address in the
memory of the target processor. When allocating a variable the memory
manager simply walks this chain and finds the memory block with the
lowest address which is big enough to accommodate the variable to be
allocated.

When an output variable is created, its ‘scope’ is established. A vari-
able goes out of scope if all the operations that consume this variable hase
already been executed. In this case the memory chunk assigned to the
variable is freed and the place the variable occupied can be reused. As the
scheduler cannot know when allocating the variable, on which processor(s)
that variable will be consumed. every instance (variable sent to other pro-
cessors) of that variable stays ‘alive’ on every processor until all operations
that consume that variable terminate.

A variable can be local or global. Local variables are used internally
by blocks. A variable is local if it is created in a block not at root level and
it is consumed only by the operations of that block (so it is not connected
to a block output). Every other variable is global. Blocks have their own
address maps that start at relative address 0. At the end of the scheduling
when we know, how much memory is required fir the global variables, local
variable addresses are relocated so that these variables be allocated starting
at the end of the memory allocated for global variables. Local variables of
blocks thus overlay each other (Fig. 10).

11. Compiler Passes

Rafael compiler works in 5 passes.

Reading Graph Description File

The compiler reads in the SFG file and parses it syntactically. Then it anal-
yses the connection definitions and signals connection errors (connecting to
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Var3
Var3
Var2 Var2
Va2
Varl Var 1 Varl
Memory map for Block A Memory map for Block B Memory map for root block

Memory map for Block A Memory map for Block B

memory top
Var3
Var2
Yar2
Varl Vart
Var3
Vac2 Root block variables
Varl
base address
Final memory map

Fig. 10. Block memory overlaying in Rafael (supposing 1 processor)

nonexisting node, nonexisting input, etc.). During this phase the compiler
rebuilds the tree in the memory of the computer, ready for analysis.

Type Checking

The compiler resolves the dynamic type names and checks if there are
type errors (see section 4 for further explanation). The type checker is a
recursive routine that propagates the static type names from node to node
substituting dynamic type names with static ones and signaling errors if
type name violation is found. The type checking starts at descendants of
probes as they are the only nodes that surely do not have dynamic types.

IPF Checking

IPF stands for interpolation factor and is used to support Rafael’s multirate
features (section 6). IPF is the rate of the node’s execution in the multirate
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model. IPF is represented by two distinct numbers, the nominator and the
denominator so IPF:1.4 means 1/4 execution rate.

Rafael uses a recursive subroutine similar to the typechecker to prop-
agate IPFs along the graph and looks for the minimal IPF factor. Propa-
gating IPF means that the IPF at the input of the operation is multiplied
by the sample frequency multiplication factor stored in the database at the
output description yielding output IPF then it is passed to all the nodes
connected to the outputs. The actual implementation of Rafael prescribes
that the output sample on all the outputs should be the same. During
the IPF propagation the minimal IPF in the graph is recorded. As IPF is
calculated by division or multiplication by integer factor, all IPFs in the
graph must be integer multiple of the minimal IPF. So the factor

IPFnode

is the loop count that determines, how many times an operation with IPF
IPF, 4. must be repeated if the minimal IPF is I PFy,;,. Note that oper-
ation changing IPF are always executed on the higher input sample rate
and output sample rates (Fig. 11).

N1 N2 N3

IFF: 1 14 1/4 5/4
N1
Loop 4 times
Decimator
N2
Interpolator
Loop 5 times
N3

+___

Fig. 11. IPFs in an example graph and looped schedule
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Fig. 12. ASAP and ALAP schedules

Scheduling

The formally correct, typechecked graph \:vith IPF values for all the nodes
calculated is then passed to the scheduler algorithm. The actual version of
Rafael contains only the RHLS scheduler but work is under way to imple-
ment the much more efficient Springplay scheduler (PALLER — WOLINSK],
1995) in the software. '

RHLS is an ALAP-based list scheduler which was made suitable for
heterogeneous environment. In the first step we create ASAP and ALAP
schedules in order to get the ALAP levels. We present briefly ASAP and
ALAP schedules below.

ASAP algorithm was presented first in HU’s classical publication (Hu,
1961). ASAP scheduler starts operations as soon as all the predecessor
nodes terminate the computation that is

E(n;) = max(E(pred(n;))) + t5"°%, (1)

where t7;°“" is the execution time of node : and F(n;) is the earliest time

when n; can be executed. Node with no predecessors have E = 0. This
simple version is only for homogeneous architectures. The original version
supposes unlimited resources and schedules nodes just at their E.

ALAP schedule is based on very similar principles. Nodes are sched-
uled as late as possible without increasing the length of the schedule.

L(n;) = min(L(succ(n;))) — t7°%P. (2)

L(n;) is the latest time when n; can be executed in the case of minimal
length schedule. L values of nodes with no successors are initialized to the
maximal F value over the entire graph. Fig. 12 depicts the ASAP and
ALAP schedules of an example graph.
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RHLS assume the we can always schedule the nodes on the fastest
processor possible so minimum execution time is supposed when building

the ASAP-ALAP schedules.
£:259P — min(E2),
where 7, is the execution time vector that is composed of execution time
of node n on each processor. Then we define urgency of the operation n
like the following:
Un, = Ln,' - tv 3 (3)

where t, is the virtual ttme and it will be detailed later.

The base of the scheduling heuristic is to assign the nodes on the
critical path to the fastest processor available. The more urgent it is to
execute a node (as its delaying would set back the execution of the whole
graph) the faster processor it deserves. The most urgent nodes are those
which have the lowest ALAP time.

We pick hence the node to be scheduled based on the u,; urgency value
defined above (lowest urgency value means more urgent node) and we need
the best processor to execute it. The best processor selection is very simple:
we try the node on each processor considering the communication costs and
we pick the one on which the node achieves the earliest completion time.
Before trying a node on a processor, necessary communication activities are
scheduled tentatively so that we know how much time must be calculated
for fetching the input variables produced on other processors.

The heuristic algorithm works like the following:

Create the ready node list from nodes that have no predecessors;
while the ready list is not empty do
for all nodes do
if u(i) < minimum so far
Candidate = node 1i;
end for
Try the candidate on each processor considering communication
cost;
Choose the processor on which the task achieves the earliest
ending time;
Schedule candidate node and the necessary communication
activities on candidate processor;
Update u(i)s and tv;
Add nodes that become ready to the ready list;
end while

As the real t,, node starting times will generally not be equal to the
ideal ASAP or ALAP starting times the scheduler maintains real processor
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times and t, virtual time. The virtual time is used to track the time in
the ALAP schedule graph while the real time is the scheduling time on
the processors. The ¢, variable shows where we are in the ALAP schedule
graph, it is set to the lowest ALAP time among the ready nodes. The last
step is the updating of urgency and virtual time variables.

The version implemented in Rafael differs from the algorithm pre-
sented above considers node repetition resulted by multiple sample rate
loops (see IPF checking section). The schedulers consider effective node
execution time as cioop - tn™° " and try to group nodes with the same IPF
together.

Code Generation

The scheduling done, Rafael generates the output text for each processor.
The code generator walks the activity list on each processor then asks the
Lisp code generator database functions to produce output text for them
which is then sent to the output file. Separate output files are generated
for each processor. The model of output text will be discussed in detail in
the next section.

Code Generation Model

Rafael has a parametrizable code generation that allows each section of the
text generated to be redefined. The code generator invokes Lisp functions
that receive the parameters of the text section and the device for which
the code will be generated then it is the responsibility of these Lisp func-
tions to produce the appropriate text. These code pieces are called code
generator service functions and they complement the operation strategy
routines. Every text section that Rafael writes to the output text file can
be redefined by modifying either the operation strategy functions (in the
case of operation texts) or the code generation service functions (headers,
communication routine codes, etc.).

Rafael generates three text sections for each processor (that may be
empty as well). For programmable processor-like devices that Rafael was
designed for, the database programmer may wish to realize these three
sections as subroutines. These sections are the following:

1. Constructor section. Called only once from the user program before
the first iteration of the dataflow computation.
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2. Operation section. Called once for each iteration. Calling the opera-
tion section entry label will actually execute the program generated
from the SFG.

3. Destructor section. Called once after the last iteration of the opera-
tion section.

Each section has a start and end header that probably contain section
head label in the start header and ‘return’ instruction in the end header.
The sections contain the text generated by the operation constructor, strat-
egy and destructor functions.

If the compiled SFG was written in block conditioned model, each sec-
tion has a separated part for each block. In the constructor and destructor
sections it is rather a formality as Rafael guarantees no specific order among
the operators when it generates constructor and destructor sections. In the
operation section each block has a start and end header. The current op-
eration library realizes blocks as subroutines so the start header defines a
block entry point label and the end header contains a ‘return’ statement.
The block subroutine contains the operation body texts in the schedule
order. Having block subroutines generated, Rafael emits the text for the
root block that contains probe calls and block invocations. Block invoca-
tions in the current operation library result in subroutine ‘calls’ to block
subroutines.

12. Conclusions

Rafael cannot compete in complexity with the most advanced systems
partly because of the limited capabilities of the host computer we chose,
partly because of the significantly less human resources we could devote to
the project. The final product, the compiler itself has been implemented
but many support programs that would make its usage convenient have
not even been planned. For this reason the actual Rafael system is not
so ‘user-friendly’. As all the resources were concentrated on the compiler
development, important parts of the system have not achieved the neces-
sary level yet. The most important among them is the operation database
that contains only about a dozen operations only for the TMS320C30 and
DSP96002 DSPs. A brave user of Rafael must face the immediate task
of filling up the database which requires Lisp programming. Lisp is con-
sidered a difficult language among the users although the simple functions
needed by the compiler core should be easy to implement for a bit more
experienced programmer.

Two distinct influences can be discovered in the Rafael design. The
first one is Lee’s synchronous dataflow approach and the Gabriel system
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which gave us the first notions, how Rafael should look like. We quickly
faced, however, the need of run-time decisions and the difficulties it causes
in a system based on synchronous dataflow. The second influence that
we embedded into Rafael was the way the synchronous language compilers
work and SynDEx transformes their output to distributed code. Critique of
the SynDEx approach was given and a model that was easy to implement
to an existing synchronous dataflow system was developed and realized.
Limits of this model were pointed out but we consider that in many practi-
cal cases, notably in the DSP case they are acceptable. Further researches
are conducted to find a better way for handling dynamic structures in a
dataflow system.
So Rafael project achieved its aims at the following points:

—. A flexible multi-target SDF compiler has been realized on PC plat-
form.

— Effective scheduling algorithms have been developed for the hetero-
geneous case.

Rafael still has a long way to go at the following fields:

— More user-friendly environment (graph editor, database editor tools,
etc.).

— Complete database for various DSP processors.

Better communication model.
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Abstract

The scheduling of jobs through a multi-processor system is important from many aspects.
It is often assumed that jobs are scheduled on the basis of some simple rule, such as
First-Come First-Served, or Shortest Processing Time First.

In earlier work we found some evidence to suggest that use of a more sophisticated
strategy, based on the use of a Genetic Algorithm (GA) to ‘look ahead’, could enhance
system performance. Here we investigate this idea more thoroughly.

1. Introduction

Recent advanced in heuristic methods for static sequencing problems have
included several reports [1, 2, 3] of the use of genetic algorithms, which
have been found to be robust and efficient ways of solving such problems.
‘In an earlier paper [4], we considered the use of a genetic algorithm (GA)
to solve a dynamic flowshop sequencing problem. This problem relates to
the sequencing of jobs on machines in a manufacturing environment, but
this case has obvious parallels in a computing context, where the jobs are
program tasks, and the machines are processors. There is a difference in
that the scheduling of computer program tasks needs to be done in real
time, which is not so critical a requirement in a manufacturing environ-
ment. But first we need to establish whether such an approach can indeed
out-perform simple scheduling rules, before considering how it could be
implemented in practice.

We consider a somewhat idealised problem, where jobs arrive at a job
pool before passing through m processors arranged in series. The time i;;
required for processing job i on processor j is known, or can be reliably
estimated. There is infinite buffer storage between consecutive processors,
and no job pre-emption is allowed. Initially there are n’ jobs in the pool,
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but further jobs arrive as time passes, in accordance with a known inter-
arrival time probability distribution.

Job pool

The problem is at any stage to determine the sequence in which the
jobs in the pool should be processed in order to optimise some measure
of performance. This is clearly a dynamic problem, since as more jobs
arrive the current ‘best’ sequence may have to change. Of course this is
an approximation to what really happens — in real problems jobs may not
call on all processors in the same order, they may need to visit a subset of
processors more than once, and so on. However, our purpose in studying
this simplified version of the problem, as outlined above, was to test the
effectiveness of different ways of scheduling jobs. Simple scheduling rules
are usually concerned only with the next job, without trying to consider
the current job pool as a whole. Our hypothesis is that using a GA to ‘look
ahead’ would be a more effective means of approaching such a problem.

There are a number of ways of assessing the performance of a system
like that described. It was decided that the most natural performance
measures would be the mean response time,

" Cj - A
R(n) =) ——*,

i=1

where n jobs have been processed, and job j arrived at time A;, and was
completed at time Cj; and the throughput rate,

n
T =& —4

These performance measures are of course correlated to some extent, but
while response time refers to the system performance from the viewpoint
of the jobs, throughput rate measures performance from the server’s per-
spective.

2. Implementation

A simulation model of the system described above was programmed, as
shown in the box below:
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— Initialise job pool;
— Compute job sequence;
— Schedule 1st job;
~ Compute 1st event time T'g;
— Repeat
If no arrivals before Tz then
1. schedule next job;
2. compute next event time T’g;
— else
1. add additional job(s) to current job pool;
2. re-compute job sequence for current pool;
3. schedule next job

4. compute next event time Tx;

— Until simulation time exceeds a specified limit.

Clearly, the GA enters at the points where a re-computation of the ‘best’
sequence of the current job pool is required. The simple scheduling rules
would also be implemented at this stage.

It is important to realize that by re-computing the best sequence from
the current job pool, we make the assumption that a good overall solution
will be obtained if we try at any stage to sequence the currently available
jobs as if no more jobs will arrive. It is this hypothesis that we shall
evaluate by comparing with more traditional job scheduling criteria.

2.1. The Genetic Algorithm

The GA used to solve the sequencing problem was adapted from that de-
scribed in [3], whose characteristics can be summarised as follows:
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— an initial population of 30 chromosomes using a sequence
representation;
— parent selection using ranking;
~ incremental population replacement (also known as a steady-state GA);
- replacement of a randomly chosen string of below-median
fitness;

~ a sequence-based crossover (sec [3] for details);

— an adaptive mutation rate;

- a termination condition of O(nmlog[m -+ n])

objective function evaluations.

At the first stage, the initial chromosomes were chosen at random, and this
could also be done at each subsequent application of the GA. However, by
basing, at each stage, the initial population on the population of solutions
obtained at the previous stage, we found that good solutions to the current
problem were determined more rapidly, which may be an advantage when
a decision on the next job to be sequenced is needed in real-time.

2.2. Other Selection Criteria

There were 3 obvious candidates for simple selection criteria instead of the
GA: we could use

— job arrival order (FCFS);
— shortest (first machine) processing-time order (SPT(1)).
— shortest (total) processing-time order (SPT(all));

The first of these corresponds to doing nothing, simply scheduling
on a First-Come First-Served basis; the other two attempt to take into
account the likely delay to other jobs that could be incurred by scheduling
a specified job now. Clearly, by scheduling a job with a large processing-
time requirement when other (shorter) jobs are available, the response-time
for those other jobs is likely to be increased. The first machine is of course
the most important in our model, since once the current job completes
processing on the first machine, we are free to schedule another. The
rationale for SPT (all) is that, like the GA, it also tries to ‘look ahead’
beyond the immediate decision.

These type of criteria have been studied for some special cases of
single-processor scheduling problems using a queuing-theoretic framework,
and CONWAY et al. [5] have an interesting discussion which shows that,
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under certain conditions, the Shortest-Processing Time criterion is optimal
for single-machine problems. However, this cannot be shown to hold for
multi-processor problems.

45 T T T T T T

40 - mrt-ga — — -
35 _mrt—spt — B
30 ~
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Fig. 1. Mean response times

3. Test Problems

Several sets of test problems were generated. In each case, the arrival
rate and service (processing) rate of jobs were assumed to be the same:
clearly, if the arrival rate is greater than the service rate, the size of the
job pool will increase without bound, which would not be tolerated in a
real system. Job arrivals were assumed to occur according to a Poisson
process, but job-processing times were generated from 5 different distribu-
tions with different coefficients of variation (CVs) of processing-times. We
used Erlang-k (hypo-exponential) distributions with £ = 4 and k = 16,
an exponential distribution (corresponding to a Poisson process), and two
branching-Erlang distributions to simulate distributions with high CVs.
The complete range of CV values was {0.25, 0.5, 1, 2, 4}. General de-
tails of the distributions used and their characteristics can be found in, for
example, SAUER — CHANDY [6].

In each case, 30 jobs were assumed to be in the pool initially, and the
simulation was continued until a further 530 jobs had entered the system.
In the first group of problems, the number of processors was set at 4.
The values of T'(n) and R(n) were measured when each job completed
all its tasks. They could then be plotted on a graph as shown in the
example below.
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To do this for every run is clearly impracticable; in order to summarise
these graphs, we calculated the average difference between the 7'(n) and
R(n) values for GA and FCFS over the whole run length. Thus we could
obtain a measure of the success of the GA against the ‘donothing’ option.
We then repeated this for SPT(1) against FCFS, and SPT(all) against
FCFS. Each case was replicated 4 times, so the results reported in Table I
below are the means of 4 runs in each case. In this table, the first value in
each cell is the average difference for R(n), the second for T'(n).

Table 1
Average differences in MRT & TPR: 4 processors

CV  GA SPT(1) SPT(al)
0.25 -10.33 -9.15 -12.76
0.024 0014 0.034
050 -10.48 -8.73 -16.03
0.023  0.012  0.058
1.00 -17.35 —-13.26 —20.37
_0.056  0.032  0.112
2.00 —32.32 -21.05 -39.90
0.119  0.052  0.201
400 —30.76,  —6.97 -37.61
0.141  0.026 0.174

The whole procedure was then repeated for the case of 8 processors,
with the results shown in Table 2.

Table 2
Average differences in MRT & TPR.: 8 processors

CV  GA SPT(1) SPT(all)
0.25 -12.52 -8.64 -12.54
0.038  0.016  0.036
050 872 -6.94 -13.03
0.022  0.007  0.041
1.00 -17.54 -10.06 —21.05
0.056  0.006  0.097
2.00 3458 -12.50 -37.74
0.090  0.024  0.140
4.00 —62.32 -21.16 -59.71
0.133  0.028  0.170
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On the whole, all 3 rules were able to improve system performance,
in terms of both performance metrics: that is, it is possible to improve
performance both from the point of view of the system throughput and at
the same time to provide a better service from the point of view of the
customer.

It is clear that SPT(1) provides the last improvement in performance
over FCFS. It can also be seen that SPT(all) nearly always does slightly
better than using the GA. This contradicts our earlier findings, reported
in [4]. We have not yet fully resolved this contradiction, which may be
simply an artefact of the random number streams used in the simulation.
However, this latest work is based on more extensive and comprehensive
testing, and is probably more reliable. The differences are in any case fairly
small.

14 T T T T T T
tpr-ga —
1.2 L tpr-spt — -

0.2 1 i 1 1 { 1
0 100 200 300 400 500 600 700

Fig. 2. Throughput rates

We must also bear in mind the amount of computing has to be done in each
case. In terms of time actually spent in selecting the next job, SPT(1)
needs the least, while SPT(all) needs slightly more, since it requires the
summation of processing times for m machines. The amount needed for the
GA can be user-controlled, depending on what degree of convergence to the
(unknown) optimal sequence is desired. In practice, and on average, it took
an order of magnitude more computation than the SPT rules. (There was
considerable variability, too: in the case CV < 1, for most of the simulation
period the queue lengths tended to be much greater, which meant the GA
had far bigger problems to solve, and thus took much longer.) In view of
this, it would seem desirable to use the simpler SPT(all) rule.
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4. Conclusions

The results obtained confirm that, on average, the performance of a multi-
processor system is improved by using a ‘look-ahead’ rule for scheduling
rather than FCFS. However, contrary to our original expectations, the
extra sophistication of a GA-based scheduler was not in this case worth
using. The SPT(all) rule also uses a ‘look-ahead’ principle, and in this
case produced superior results to the GA, and produced them much faster.
In any particular problem the actual time needed for scheduling must also
be considered, so whether there is any gain over FCFS in practice will of
course be problem-dependent.

The problem investigated is rather straightforward, so in a sense it is
not surprizing that a simple rule like SPT(all) performs well. We intend to
investigate more complex problems where more sophisticated approaches
such as GAs might be needed.

We should also emphasize that in real problems processing times are
not always known in advance, although we may be able to predict them
with a fair degree of accuracy. Genetic algorithms have been found effective
for stochastic flowshop sequencing [7], and future work will also investigate
the potential for using GAs in multi-processor systems which are both
dynamic and stochastic.
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Abstract

In recent years the need for advanced robot control algorithms for industrial robots has
grown. The development of a low-cost robot controller to support the developmen’t, im-
plementation and testing of those algorithms which require high computational power
was targeted. This paper deals with the requirements of an experimental controller that
can be connected to a NOKIA-PUMA 560 robot arm. It explains the IBM PC compat-
ible host and the TEXAS Digital Signal Processor (DSP) based hardware. On the host
computer the UNIX-like QNX real-time operating system is used. In the current phase of
development the robot controller works with the classical decentralised joint control based
strategy. The Advanced Robot Programming System (ARPS) explicit robot programming
language is implemented.

Keywords: robot control, multiprocessor systems, IBM PC, DSP, QNX, ARPS.

1. Introduction

Numerous advanced robot control algorithms, such as computed torque
technics (nonlinear decoupling and decentralised PID controllers), resolved
motion acceleration control, hybrid position and force control (operational
space formulation), model reference adaptive control and fuzzy control,
are currently undergoing research and experiment. Such algorithms are
increasingly in demand in the workplace. The hardware and software
of industrial robots are closed systems, with an unsatisfactory computa-
tional power and thus the implementation of advanced control strategies is
not feasible.

!The research work was supported by the Hungarian research Fund (OTKA) under the
terms of grant No. T 016835
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2. The Requirements of the Robot Controller

Advanced robot control algorithms are based on the nonlinear dynamic
model of the robot arm with a driving torque of:

H(q)q+ (g,9) = H(q)q+ C(q,4)a + D(q) = 7, (1)

where H is the inertia matrix, C is the centripetal, Coriolis and friction ef-
fects, D is the gravitational part and T is the driving torque. An over-riding
problem in the implementation of such algorithms is that the driving torque
needs to be computed within 1-10 ms. This computation requires multi-
processor architecture and nonrecursive algorithms are favoured where par-
allel computing is possible (LANTOS, 1991 and SOMLO et al., 1997).

The low-cost experimental robot controller was initially developed for
a six degrees of freedom NOKIA-PUMA 560 robot arm. The requirements

of the controller hardware were as follows:

— modular architecture,

— extendibility,

— easy system development possibility,

- interfacing several sensor processors possibility,
— changing the host computer possibility.

The robot controller should:

— be an open system,

— have a modular (layered) structure that does not reduce efficiency,

— be based on such programming languages and methods that they
guarantee software portability.

3. The Hardware

Examining the possibilities of the development of such systems the IBM PC
based multiprocessor architecture was chosen (BEzI and TEVESZ, 1994).
Two robot controllers were built for the cooperating departments. One
works at the Department of Automation while the other is used at the
Department of Process Control.

Regarding the above requirements, the aim was to develop an open
system where the implementation and testing of different control algorithms
is easy. Capitalising on the benefits of commercial products, the available
parts of the control system were chosen for their speed, serviceability and
interchangeability. The whole control system was built on the IBM PC
basis because of the many standardised, easily obtainable modules and
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because of the wide-spread usage of these machines in the field of process
control. The multiprocessor core of the system and the interface to the
controlled process was target specific design. The result of this development
is shown in Fig. 1.

The present host computer is based on an i486DX2/66 main board.
The advantage of this choice is the extensibility of the performance by
simply upgrading the host processor without major changes in the software
system being developed. The link between the modules of the system is
the ISA bus. This is the only bus system in the 12 year history of IBM PC
that has survived all other improvements in more modern announced bus
systems (EISA, VESA, VLB, PCI). Because of the number of used modules
the host computer consists of two racks connected with ISA bus expansion
cards without reducing the speed of the communication.

. libratin;
ROBOT CONTROLLER E“V"%“E"“‘ potentiometers
Al

PCISA-BUS

1L

" ARC [ Dual Port RAM ““ARC: | Dual Port RAM
386EX (::j RS2 |Ny { 386EX )2

{ Dunl Port RAM | Sends e Dual Port RAM |
31 [(E)

TMS320C31 ki} (::)'j Sm'"- o=} | TMS320C31 C:Z)/'::j Synehe. | lmsm
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Fig. 1. Configuration of the robot controller
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The connection between the host and the other intelligent units is provided
by a Local Area Network. At present this is built up with a 10 Mbit/sec
Ethernet line but there are no difficulties in changing it to the compatible
type of 100 Mbit/sec speed on demand. The benefits of this choice are:
standardised modules, developed continuously, newer and newer products
are compatible with previous ones and it provides the spatial distribution
of the units.

The connection between the host and the passive environment is pro-
vided by a high speed, high performance, multi-function data acquisition
card (PCL-812PG). The calibrating potentiometers of the robot arm are
connected to the programmable gain analog inputs. In addition the data
acquisition card supports connecting of 16 digital input and 16 digital out-
put lines that provides more control tasks to be made.

The algorithmic part of the robot control and the direct control of the
arm is fulfilled by the self developed Advanced Robot Controller (ARC)
card. ‘This is the most important part of the system so the features are
explained in detail. This card is a multiprocessor card which communicates
with the host over the ISA bus, with each other over the CAN bus, a high
speed serial bus and over a special parallel (synchronising) bus. This card
provides all the signals for the external DC servo amplifiers and receives
the sensor signals of incremental encoders in the robot arm.

To increase the computational performance a high-speed transputer
card can be implemented in the system. The task of this card depends on
the particular control algorithm. The aim is to communicate with this card
over the ISA bus providing interchangeability with another, more suitable,
task specific card regarding the unified communicational system. In the
present system a third ARC card is used for the computational needs of
the advanced control algorithm. The first two ARC cards are used for the
direct control of axes.

The six joints of the robot arm are directed by the self developed DC
servo amplifiers. These amplifiers work over 18 kHz switching frequency
with pulse width modulation. The set point signals for current come from
the ARC cards in analog form and the analog PI controllers of the servo
amplifiers perform the real values (and limits on demand).

The most important part of the experimental robot control system is
the ARC card. The block scheme of this module is shown in Fig. 2. Every
card consists of two microprocessors: the so called preprocessing unit is
an 1386 EX microcontroller while the second, so called joint processor, is a
TMS320C31 DSP. On each card 4 whole featured interface is available for
electronic drives (joints or axes). Considering the complex task of robot
control and depending on the implemented algorithms the use of two or
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three ARC cards is planned. This way each card provides the connection
and control task for three or two joints.

The main blocks of the cards are as follows:

The preprocessing unit is the new embedded microprocessor by Intel
(1386EX). This device provides a 100% compatible environment with PCs
integrating the basic peripheral functions of a main board. This 32 bit,
80386 based microprocessor serves not only with the MMU for the possibil-
ity of Virtual Protected Mode but contains special enhancements like the
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missed watch-dog circuit. The memory of this unit consists of a flash block
(256 kbyte or 1 Mbyte) and the usual DRAMs (the capacity depends on
the used SIM modules: from 512 kbyte up to 8 Mbyte). The non-volatile
chip contains at present a BIOS but the implementation of a whole ROM-
DOS system is planned which would make the development and testing of
different robot control algorithms much easier.

The joint processing units are high-speed CMOS 32-bit floating-point
single-chip Digital Signal Processors (DSP) - TMS320C31. These DSPs
have the highest performance in the system with a capability of 16 MIPS
and 32 MFLOPS. The tasks of these joint processors are:

- taking the position signals and calculating the speed and acceleration,
credibility check using the null impulses,

— supervising the position, speed and acceleration limits,

— producing the current set point values for servo amplifiers,

- providing the synchronization in starting and stopping the axes.

The high performance of the joint processor is supported by the high-
speed static RAM (32-128 kword). The required access time (18-20 nsec)
is unreachable in the case of non-volatile memory so this device uses the
built in Boot Loader to load its own program system from the flash of the
preprocessing unit over the (dual port) DPRAM. The flash memory of the
preprocessor contains the programs for both processors on the card. In
order to the highest possible response time the signals of the position, speed
and acceleration sensor incremental encoder are connected directly to the
DSPs through the intelligent interfaces (direction discriminator, counter
and null impulse logic) realised by tacho processors of type TC3005H. The
analog circuits for current set point and the servo amplifier controlling
digital input and output signals are also connected to the joint processor
directly. A three-wire synchronisation channel provides for simultaneous
movement of the axes connected to different ARC cards.

Communication Channels inside the System

The most important questions in time of the design were the choice of
proper communicational channels. The low throughput of these connec-
tions would limit the performance of the responsible units.

These channels are shown in Fig. 3. The broken connections are for
the most important development possibilities that are not implemented in
the present system. :

The preprocessing units are functionally set between two other pro-.
cessors (the host and the joint processor) and the communication in both
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directions has a main role in the functionality. Since both of the connec-
tions have a high capacity demand the highest throughput has been chosen
here: the links are high-speed dual port RAMs (DPRI and DPRD blocks
in Fig. 2). This realisation provides the maximal speed communication be-
cause the communication is delayed only in the case when both sides ac-
cess the same cell simultaneously. The throughput of the channels between
the host and preprocessor using the built in 16 bit-word access is approxi-
mately 5 Mbyte/sec and between the preprocessor and joint processor is 10
Mbyte/sec. In order to attain optimal performance the available interrupt
possibilities should be used on every side. 8 built in hardware semaphores
per page are available for the data block consistency.

The preprocessors in communication with each other should not use
the host (over the other way loaded ISA bus) but these modules are con-
nected via a real multimaster serial Controller Area Network (CAN) bus.
This bus is accessible on the back plane of the ARC cards so other external
elements of the control system can be connected via CAN bus on demand.
The physical speed of 1 Mbit, concerning the message identification and
check philosophy of CAN protocol, provides approximately 50 kbyte/sec
data throughput. Of course this channel is not for moving huge data blocks
but rather for changing intermediate results of robot control algorithms.
The multimaster property of CAN bus providing the communication of
equal members is essential (however, the traffic can be mastered by one).

The RS232C compatible serial line of the preprocessor has been built
only for test purposes in the early development phase.

A special synchronisation bus has been developed for the joint pro-
cessors providing the simultaneous movement of joints. This bus consist of
only three lines with the availability of wired OR (in negative: AND) logic
between the processors. Its speed is ca. 8 Mbit/sec.

5. Software

The system was designed to be low-cost so the heterogeneous architecture
caused some informatical problems. The requirements were:

— software development and test on host,

— connection with intelligent sensors via network,

— user friendly operator interface,

— software development and test for the preprocessor (i386EX),

— program transfer and running on the preprocessor,

— software development and test for the joint processor (TMS320C31),
— program transfer and running on the joint processor.
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Fig. 3. Communication channels inside the system

In the host computer the QNX real-time UNIX-like operating system

was chosen (DODGE, 1992). This provides multitasking, priority-driven
preemptive scheduling with three scheduling algorithms following the TEEE
POSIX 1003.4 specification. The QNX is a flexible, distributed (networked)
operating system, characterised by microkernel architecture and message-
based interprocess communication. This interprocess communication is
performed in three ways: as messages (synchronous communication), prox-
ies (special form of messages) and signals (asynchronous communication).
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Another communication possibility is shared memory when proxies and
signals can provide the synchronisation. The QNX has advanced timing
facilities and the interrupts can be handled on a process level. The QNX
Windows system provides the user friendly interface.

In the interests of portability and transferability of particular tasks
between processors the software development uses only C language (Wat-
com/Borland/ Microsoft/Texas Instruments). The benefits of this ‘broad-
spectrum’ (high and low level capabilities) language are well-known and C
is available for all used microprocessors.

The first phase of software development for ARC card provides a sim-
ple BIOS. With the help of this system the program transfer and running
is possible through few system calls (software interrupts on i386EX and
assembly function calls on TMS DSP). In addition to the previous func-
tions the possibility of character input and output is provided for both
processors. Based on the BIOS a developing environment was made which
is used for program and test each processor using C language. The pre-
processor is able to run programs in DOS EXE format but does not pro-
vide the whole IBM PC environment. The startup code of Borland C was
changed and the same type of modification was made in case of the Wat-
com C compiler. In order to achieve proper functionality of the watch-dog
circuit the boot routine (c_int00) of the Texas Instruments C compiler for
TMS320C3x/C4dx processors had to be modified as well. This compiler is
available only for DOS so the QNX Rundos (a DOS emulator) was used
first. Because of the incompatibility between Rundos and TMS C compiler
this method was cancelled (VOROS, 1995).

For the build up and first time check of the whole hardware system
the following programs were written for QNX Windows:

— set and measurement of the analog and digital ports on the PCL-
812PG card. This program is able for displaying the signals of the
potentiometers in the robot arms,

— program transfer and running in the joint processor using the prepro-
cessor only for data forwarding,

— determination of joint position and speed giving out the current set
point and sending back the information (including ARC status) to
the host.

Based on the experience of test programs low level control software
was made which realizes a double loop digital PID controller for speed and
position (the third loop is the analog PI controller in the DC servo ampli-
fiers). The communication protocol of the undocumented teach pendant
was decoded and the driver for this device was implemented in the soft-
ware. Other software modules are available for determining the character-
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istic of potentiometers and calibrating the robot arm (DONAT, 1996 and
KORCSMAR, 1996.).

The Advanced Robot Programming System (ARPS, the original pro-
gramming system of the NOKIA-PUMA 560) was implemented in the De-
partment of Process Control (JAsz, 1996) and integrated into the software
system (KORCSMAR, 1996).

6. Conclusions

The experimental robot control system in its present form is serving well in
the education of robot programming. Considerinig the present experience
for the realization of advanced robot control algorithms the next steps are:

— developing the BIOS system of the ARC card burning some new func-
tions into flash memory,

— speeding up the communication over dual port RAMs,

— working out the communication on CAN bus,

— implementing an operating system subset (utilizing the embeddable
capabilities of QNX microkernel architecture) on the preprocessor.

The present experimental robot control system on the Department of Pro-
cess Control will be used as part of an intelligent control system of a robot
with a dextrous hand. The development of the software based on the above
architecture is being continued at the Department of Process Control in
some new directions like a new communication principle between host PC
and ARC control boards, new basic software components, advanced con-
trol algorithms using self tuning adaptive control, neural control and fuzzy
experts (KLATSMANYI, 1996). The architecture and the software of two
further subsystems were developed at the Department of Process Control
(LANTOS et al., 1997). The first of these new subsystems is the control sys-
tem of the tendon-driven three-fingered (9 degree-of-freedom) TUB dex-
trous hand (LUDVIG, 1996a), allowing high-level grasp-planning and im-
plementation (LUDVIG, 1996b). The second new subsystem is a low-cost
stereo vision system. The task of the stereo vision system is to collect im-
age information about the robot, the hand and the environment, process it
and send the results to the control systems of the robot and the hand. The
image processing is based on the theory of projective geometry, statistical
object recognition and parameter identification (LANTOS et al., 1997).
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